
F. Borrelli, A. Bemporad, M. Morari

Predictive Control

for linear and hybrid systems

February 20, 2011

Cambridge





to Maryan, Federica and Marina

and all our families





Preface

Dynamic optimization has become a standard tool for decision making in a
wide range of areas. The search for the most fuel-efficient strategy to send
a rocket into orbit or the most economical way to start-up a chemical pro-
duction facility can be expressed as dynamic optimization problems that are
solved almost routinely nowadays.

The basis for these dynamic optimization problems is a dynamic model,
for example,

x(k + 1) = g(x(k), u(k)), x(0) = x0

that describes the evolution of the state x(k) with time, starting from the
initial condition x(0), as it is affected by the manipulated input u(k). Here
g(x, u) is some nonlinear function. Throughout the book we are assuming
that this discrete-time description, i.e., the model of the underlying system is
available. The goal of the dynamic optimization procedure is to find the vector
of manipulated inputs UN = [u(0)′, ..., u(N − 1)′]′ such that the objective
function is optimized over some time horizon N , typically

minUN

N−1∑

k=0

q(x(k), u(k)) + p(x(N))

The terms q(x, u) and and p(x) are referred to as the stage cost and terminal
cost, respectively. Many practical problems can be put into this form and
many algorithms and software packages are available to determine the op-
timal solution vector U∗

N , the optimizer. The various algorithms exploit the
structure of the particular problem, e.g., linearity and convexity, so that even
large problems described by complex models and involving many degrees of
freedom can be solved efficiently and reliably.

One difficulty with this idea is that, in practice, the sequence of u(0), u(1), ...,
which is obtained by this procedure cannot be simply applied. The model of
the system predicting its evolution is usually inaccurate and the system may
be affected by external disturbances that may cause its path to deviate sig-

vii



viii Preface

nificantly from the one that is predicted. Therefore, it is common practice to
measure the state after some time period, say one time step, and to solve the
dynamic optimization problem again, starting from the measured state x(1)
as the new initial condition. This feedback of the measurement information
to the optimization endows the whole procedure with a robustness typical of
closed-loop systems.

What we have described above is usually referred to as Model Predictive
Control (MPC), but other names like Open Loop Optimal Feedback and
Reactive Scheduling have been used as well. Over the last 25 years MPC has
evolved to dominate the process industry, where it has been employed for
thousands of problems [217].

The popularity of MPC stems from the fact that the resulting operating
strategy respects all the system and problem details, including interactions
and constraints, which would be very hard to accomplish in any other way.

Indeed, often MPC is used for the regulatory control of large multivariable
linear systems with constraints, where the objective function is not related to
an economical objective, but is simply chosen in a mathematically convenient
way, namely quadratic in the states and inputs, to yield a “good” closed-loop
response. Again, there is no other controller design method available today for
such systems, that provides constraint satisfaction and stability guarantees.

One limitation of MPC is that running the optimization algorithm on-
line at each time step requires substantial time and computational resources,
which are generally available in a large “slow” chemical production facility,
but may not be available for the control of a system installed in an automo-
bile that must be inexpensive and where the sampling time is in the range of
milliseconds. In this case it would be desirable to have the result of the opti-
mization pre-computed and stored for each x in the form of a look-up table
or as an algebraic function u(k) = f(x(k)) which can be easily evaluated.

In other words, we want to determine the (generally nonlinear) feedback
control law f(x) that generates the optimal u(k) = f(x(k)) explicitly and
not just implicitly as the result of an optimization problem. It requires the
solution of the Bellman equation and has been a long standing problem in
optimal control. A clean simple solution exists only in the case of linear
systems with a quadratic objective function, where the optimal controller
turns out to be a linear function of the state (Linear Quadratic Regulator,
LQR). For all other cases a solution of the Bellman equation was considered
prohibitive except for systems of dimension 2 or 3, where a look-up table
can be generated by gridding the state space and solving the optimization
problem off-line for each grid point.

generally, hybrid systems. The major new contribution of this book is to
show how the nonlinear optimal feedback controller can be calculated effi-
ciently for some important classes of systems, namely linear systems with
constraints and switched linear systems or, more generally, hybrid systems.
Traditionally, the design of feedback controllers for linear systems with con-
straints, for example anti-windup techniques, was ad hoc requiring both much
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experience and trial and error. Though significant progress has been achieved
on anti-windup schemes over the last decade, these techniques deal with input
constraints only and cannot be extended easily.

The classes of constrained linear systems and linear hybrid systems treated
in this book cover many, if not most, practical problems. The new design
techniques hold the promise to lead to better performance and a dramatic
reduction in the required engineering effort.

The book is structured into four parts. Chapters marked with a star (∗)
are consider “advanced” material and can be skipped without compromising
the understanding of the fundamental concepts presented in the book.

• In the first part of the book (Part I) we recall the main concepts and
results of convex and discrete optimization.Our intent is to provide only
the necessary background for the understanding of the rest of the book.
The material of this part has been extracted from the following books and
lecture notes: “Convex optimization” by Boyd and Vandenberghe [57],
“Nonlinear Programming Theory and Algorithms” by Bazaraa, Sherali,
Shetty [23], “LMIs in Control” by Scherer and Weiland [231] and “Lectures
on Polytopes” by Ziegler [105].
Continuous problems as well Integer and Mixed-Integer problems are pre-
sented in Chapter 1. Chapter 2 discusses the classical results of Lagrange
duality. Since polyhedra are the fundamental geometric objects used in
this book, in Chapter 3 we introduce the main definitions and the algo-
rithms which describe standard operations on polyhedra. Part I closes with
Chapter 4 where Linear and Quadratic programs are presented together
with their properties and some fundamental results.

• The second part of the book (Part II) is a self-contained introduction to
multi-parametric programming. In our framework, parametric program-
ming is the main technique used to study and compute state feedback
optimal control laws. In fact, we formulate the finite time optimal control
problems as mathematical programs where the input sequence is the op-
timization vector. Depending on the dynamical model of the system, the
nature of the constraints, and the cost function used, a different mathe-
matical program is obtained. The current state of the dynamical system
enters the cost function and the constraints as a parameter that affects
the solution of the mathematical program. We study the structure of the
solution as this parameter changes and we describe algorithms for solv-
ing multi-parametric linear, quadratic and mixed integer programs. They
constitute the basic tools for computing the state feedback optimal con-
trol laws for these more complex systems in the same way as algorithms
for solving the Riccati equation are the main tools for computing optimal
controllers for linear systems. In Chapter 5 we introduce the concept of
multiparametric programming and we recall the main results of nonlinear
multiparametric programming. Then, in Chapter 6 we describe three algo-
rithms for solving multiparametric linear programs (mp-LP), multipara-
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metric quadratic programs (mp-QP) and multiparametric mixed-integer
linear programs (mp-MILP).

• In the third part of the book (Part III) we introduce the general class of
optimal control problem studied in the book. Chapter 7 contains the basic
definitions and essential concepts. Chapter 8 presents standard results on
Linear Quadratic Optimal Control while Chapter 9 studies unconstrained
optimal control problems for linear systems with cost functions based on
1 and ∞ norms.

• In the fourth part of the book (Part IV) we focus on linear systems with
polyhedral constraints on inputs and states. We study finite time and in-
finite time optimal control problems with cost functions based on 2, 1
and∞ norms. in Chapter 10 we demonstrate that the solution to all these
optimal control problems can be expressed as a piecewise affine state feed-
back law. Moreover, the optimal control law is continuous and the value
function is convex and continuous. The results form a natural extension
of the theory of the Linear Quadratic Regulator to constrained linear sys-
tems. Chapter 10 also presents a self-contained introduction to invariant
set theory as well as dynamic programming for constrained systems.
Chapter 11 presents the concept of Model Predictive Control. Classical
feasibility and stability issues are shown through simple examples and
explained by using invariant set methods. Finally we show how they can
be solved with a proper choice of terminal constraints and cost function.
Chapter 12 addresses the robustness of the optimal control laws. We dis-
cuss min-max control problems for uncertain linear systems with poly-
hedral constraints on inputs and states and present an approach to com-
pute their state feedback solutions. Robustness is achieved against additive
norm-bounded input disturbances and/or polyhedral parametric uncer-
tainties in the state-space matrices.
The result in Chapter 10 have important consequences for the implemen-
tation of MPC laws. Precomputing off-line the explicit piecewise affine
feedback policy reduces the on-line computation for the receding horizon
control law to a function evaluation, therefore avoiding the on-line solution
of a mathematical program. In Chapter 13 the evaluation of the piecewise
affine optimal feedback policy is carefully studied and we present algo-
rithms to reduce its storage demands and computational complexity.

• In the fifth part of the book (Part V) we focus on linear hybrid systems.
We give an introduction to the different formalisms used to model hybrid
systems focusing on computation-oriented models (Chapter 14). In Chap-
ter 15 we study finite time optimal control problems with cost functions
based on 2, 1 and ∞ norms. The optimal control law is shown to be,
in general, piecewise affine over non-convex and disconnected sets. Along
with the analysis of the solution properties we present algorithms that
efficiently compute the optimal control law for all the considered cases.
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Basics on Optimization





Chapter 1

Main Concepts

Abstract In this Chapter we introduce the main concepts and definitions of
mathematical programming theory.

1.1 Optimization Problems

An optimization problem is generally formulated as

infz f(z)
subj. to z ∈ S ⊆ Z

(1.1)

where the vector z collects the decision variables, Z is the domain of the
decision variables, S ⊆ Z is the set of feasible or admissible decisions. The
function f : Z → R assigns to each decision z a cost f(z) ∈ R. We will often
use the following shorter form of problem (1.1)

inf
z∈S⊆Z

f(z) (1.2)

Solving problem (1.2) means to compute the least possible cost J∗

J∗ , inf
z∈S

f(z)

The number J∗ is the optimal value of problem (1.2), i.e., the greatest lower
bound of f(z) over the set S:

f(z) ≥ J∗, ∀z ∈ S and (∃z̄ ∈ S : f(z̄) = J∗ or ∀ε > 0 ∃z ∈ S : f(z) ≤ J∗+ε)

3
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If J∗ = −∞ we say that the problem is unbounded below. If the set S is
empty then the problem is said to be infeasible and we set J∗ = +∞ by
convention. If S = Z the problem is said to be unconstrained.

In general, one is also interested in finding an optimal solution, that is
in finding a decision whose associated cost equals the optimal value, i.e.,
z∗ ∈ S with f(z∗) = J∗. If such z∗ exists, then we rewrite problem (1.2) as

J∗ = min
z∈S

f(z) (1.3)

and z∗ is called optimizer or global optimizer. The set of all optimal solutions
is denoted by

argminz∈Sf(z) , {z ∈ S : f(z) = J∗} .

The problem of determining whether the set of feasible decisions is empty
and, if not, to find a point which is feasible, is called feasibility problem.

1.1.1 Continuous Problems

In continuous optimization the problem domain Z is a subset of the finite-
dimensional Euclidian vector-space Rs and the subset of admissible vectors
is defined through a list of real-valued functions:

infz f(z)
subj. to gi(z) ≤ 0 for i = 1, . . . , m

hi(z) = 0 for i = 1, . . . , p
z ∈ Z

(1.4)

where f, g1, . . . , gm, h1, . . . , hp are real-valued functions defined over Rs, i.e.,
f : Rs → R, gi : Rs → R, hi : Rs → R. The domain Z is the intersection of
the domains of the cost and constraint functions:

Z = {z ∈ Rs : z ∈ dom f, z ∈ dom gi, i = 1, . . . , m, z ∈ dom hi, i = 1, . . . , p}
(1.5)

In the sequel we will consider the constraint z ∈ Z implicit in the optimization
problem and often omit it. Problem (1.4) is unconstrained if m = p = 0.

The inequalities gi(z) ≤ 0 are called inequality constraints and the equa-
tions hi(z) = 0 are called equality constraints. A point z̄ ∈ Rs is feasible for
problem (1.4) if: (i) it belongs to Z, (ii) it satisfies all inequality and equality
constraints, i.e., gi(z̄) ≤ 0, i = 1, . . . , m, hi(z̄) = 0, i = 1, . . . , p. The set of
feasible vectors is

S = {z ∈ Rs : z ∈ Z, gi(z) ≤ 0, i = 1, . . . , m, hi(z) = 0, i = 1, . . . , p}.
(1.6)
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Problem (1.4) is a continuous finite-dimensional optimization problem
(since Z is a finite-dimensional Euclidian vector space). We will also refer
to (1.4) as a nonlinear mathematical program or simply nonlinear program.
Let J∗ be the optimal value of problem (1.4). An optimizer, if it exists, is a
feasible vector z∗ with f(z∗) = J∗.

A feasible point z̄ is locally optimal for problem (1.4) if there exists an
R ≻ 0 such that

f(z̄) = infz f(z)
subj. to gi(z) ≤ 0 for i = 1, . . . , m

hi(z) = 0 for i = 1, . . . , p
‖z − z̄‖ ≤ R
z ∈ Z

(1.7)

Roughly speaking, this means that z̄ is the minimizer of f(z) in a feasible
neighborhood of z̄ defined by ‖z−z̄‖ ≤ R. The point z̄ is called local optimizer.

1.1.1.1 Active, Inactive and Redundant Constraints

Consider a feasible point z̄. We say that the i-th inequality constraint gi(z) ≤
0 is active at z̄ if gi(z̄) = 0. If gi(z̄) < 0 we say that the constraint gi(z) ≤ 0
is inactive at z̄. Equality constraints are always active for all feasible points.

We say that a constraint is redundant if removing it from the list of con-
straints does not change the feasible set S. This implies that removing a
redundant constraint from problem (1.4) does not change its solution.

1.1.1.2 Problems in Standard Forms

Optimization problems can be cast in several forms. In this book we use the
form (1.4) where we adopt the convention to minimize the cost function and
to have the right-hand side of the inequality and equality constraints equal
to zero. Any problem in a different form (e.g., a maximization problem or a
problem with “box constraints”) can be transformed and arranged into this
form. The interested reader is referred to Chapter 4 of [57] for a detailed dis-
cussion on transformations of optimization problems into different standard
forms.

1.1.1.3 Eliminating Equality Constraints

Often in this book we will restrict our attention to problems without equality
constraints, i.e., p = 0
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infz f(z)
subj. to gi(z) ≤ 0 for i = 1, . . . , m

(1.8)

The simplest way to remove equality constraints is to replace them with
two inequalities for each equality, i.e., hi(z) = 0 is replaced by hi(z) ≤ 0 and
−hi(z) ≤ 0. Such a method, however, can lead to poor numerical conditioning
and may ruin the efficiency and accuracy of a numerical solver.

If one can explicitly parameterize the solution of the equality constraint
hi(z) = 0, then the equality constraint can be eliminated from the problem.
This process can be described in a simple way for linear equality constraints.
Assume the equality constraints to be linear, Az − b = 0, with A ∈ Rp×s. If
Az = b is inconsistent then the problem is infeasible. The general solution of
the equation Az = b can be expressed as z = Fx+ x0 where F is a matrix of
full rank whose spanned space coincides with the null space of the A matrix,
i.e., R(F ) = N (A), F ∈ Rs×k, where k is the dimension of the null space
of A. The variable x ∈ Rk is the new optimization variable and the original
problem becomes

infx f(Fx + x0)
subj. to gi(Fx + x0) ≤ 0 for i = 1, . . . , m

(1.9)

We want to point out that in some cases the elimination of equality con-
straints can make the problem harder to analyze and understand and can
make a solver less efficient. In large problems it can destroy useful structural
properties of the problem such as sparsity. Some advanced numerical solvers
perform elimination automatically.

1.1.1.4 Problem Description

The functions f, gi and hi can be available in analytical form or can be
described through an oracle model (also called “black box” or “subroutine”
model). In an oracle model f, gi and hi are not known explicitly but can
be evaluated by querying the oracle. Often the oracle consists of subroutines
which, called with the argument z, return f(z), gi(z) and hi(z) and their
gradients ∇f(z), ∇gi(z), ∇hi(z). In the rest of the book we assume that
analytical expressions of the cost and the constraints of the optimization
problem are available.

1.1.2 Integer and Mixed-Integer Problems

If the decision set Z in the optimization problem (1.2) is finite, then the
optimization problem is called combinatorial or discrete. If Z ⊆ {0, 1}s, then
the problem is said to be integer.
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If Z is a subset of the Cartesian product of an integer set and a real Euclid-
ian space, i.e., Z ⊆ {[zc, zb] : zc ∈ Rsc , zb ∈ {0, 1}sb}, then the problem is said
to be mixed-integer. The standard formulation of a mixed-integer nonlinear
program is

inf [zc,zb] f(zc, zb)
subj. to gi(zc, zb) ≤ 0 for i = 1, . . . , m

hi(zc, zb) = 0 for i = 1, . . . , p
zc ∈ Rsc , zb ∈ {0, 1}sb

[zc, zb] ∈ Z

(1.10)

where f, g1, . . . , gm, h1, . . . , hp are real-valued functions defined over Z.
For combinatorial, integer and mixed-integer optimization problems all

definitions introduced in the previous section apply.

1.2 Convexity

A set S ∈ Rs is convex if

λz1 + (1− λ)z2 ∈ S for all z1, z2 ∈ S, λ ∈ [0, 1].

A function f : S → R is convex if S is convex and

f(λz1 + (1− λ)z2) ≤ λf(z1) + (1− λ)f(z2)

for all z1, z2 ∈ S, λ ∈ [0, 1].

A function f : S → R is strictly convex if S is convex and

f(λz1 + (1− λ)z2) < λf(z1) + (1− λ)f(z2)

for all z1, z2 ∈ S, λ ∈ (0, 1).

A function f : S → R is concave if S is convex and −f is convex.

1.2.0.1 Operations preserving convexity

Various operations preserve convexity of functions and sets. A detailed list
can be found in Chapter 3.2 of [57]. A few operations used in this book are
reported below.

1. The intersection of an arbitrary number of convex sets is a convex set:

if S1, S2, . . . , Sk are convex, then S1 ∩ S2 ∩ . . . ∩ Sk is convex.

This property extends to the intersection of an infinite number of sets:
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if Sn is convex foralln ∈ N+ then
⋂

n∈N+

Sn is convex.

The empty set is convex because it satisfies the definition of convexity.
2. The sub-level sets of a convex function f on S are convex:

if f(z) is convex then Sα , {z ∈ S : f(z) ≤ α} is convex ∀α.

3. If f1, . . . , fN are convex functions, then
∑N

i=1 αifi is a convex function
for all αi ≥ 0, i = 1, . . . , N .

4. The composition of a convex function f(z) with an affine map z = Ax+b
generates a convex function f(Ax + b) of x:

if f(z) is convex then f(Ax + b) is convex on{x : Ax + b ∈ dom(f)}

5. Suppose f(x) = h(g(x)) = h(g1(x), . . . , gk(x)) with h : Rk → R, gi :
Rs → R. Then,

a. f is convex if h is convex, h is nondecreasing in each argument, and
gi are convex,

b. f is convex if h is convex, h is nonincreasing in each argument, and
gi are concave,

c. f is concave if h is concave, h is nondecreasing in each argument, and
gi are concave.

6. The pointwise maximum of a set of convex functions is a convex function:

f1(z), . . . , fk(z) convex functions⇒ f(z) = max{f1(z), . . . , fk(z)} is a convex function.

1.2.0.2 Linear and quadratic convex functions

The following convex functions will be used extensively in this book:

1. A linear function f(z) = c′z + d is both convex and concave.
2. A quadratic function f(z) = z′Qz+2r′z+s is convex if and only if Q � 0.
3. A quadratic function f(z) = z′Qz +2r′z + s is strictly convex if and only

if Q ≻ 0.

1.2.0.3 Convex optimization problems

The standard optimization problem (1.4) is said to be convex if the cost
function f is convex on Z and S is a convex set. A fundamental property
of convex optimization problems is that local optimizers are also global opti-
mizers. This is proven in the next proposition.
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Proposition 1.1. Consider a convex optimization problem and let z̄ be a
local optimizer. Then, z̄ is a global optimizer.

Proof: By hypothesis z̄ is feasible and there exists R such that

f(z̄) = inf{f(z) : gi(z) ≤ 0 i = 1, . . . , m, hi(z) = 0, i = 1, . . . , p ‖z−z̄‖ ≤ R}.
(1.11)

Now suppose that z̄ is not globally optimal. Then, there exist a feasible y
such that f(y) < f(z̄), which implies that ‖y − z̄‖ > R. Now consider the
point z given by

z = (1− θ)z̄ + θy, θ =
R

2‖y − z̄‖ .

Then ‖z − z̄‖ = R/2 < R and by convexity of the feasible set z is feasible.
By convexity of the cost function f

f(z) ≤ (1 − θ)f(z̄) + θf(y) < f(z̄),

which contradicts (1.11). 2

Proposition 1.1 does not make any statement about the existence of a solu-
tion to problem (1.4). It merely states that all local minima of problem (1.4)
are also global minima. For this reason, convexity plays a central role in the
solution of continuous optimization problems. It suffices to compute a lo-
cal minimum to problem (1.4) to determine its global minimum. Convexity
also plays a major role in most non-convex optimization problems which are
solved by iterating between the solutions of convex sub-problems.

It is difficult to determine whether the feasible set S of the optimization
problem (1.4) is convex or not except in special cases. For example, if the func-
tions g1(z), . . . , gm(z) are convex and all the hi(z) (if any) are affine in z, then
the feasible region S in (1.6) is an intersection of convex sets and therefore
convex. Moreover there are non-convex problems which can be transformed
into convex problems through a change of variables and manipulations on
cost and constraints. The discussion of this topic goes beyond the scope of
this overview on optimization. The interested reader is referred to [57].

Remark 1.1. With the exception of trivial cases, integer and mixed-integer
optimization problems are always non-convex problems because {0, 1} is not
a convex set.





Chapter 2

Optimality Conditions

2.1 Introduction

In general, an analytical solution to problem (1.4), restated below, does not
exist.

infz f(z)
subj. to gi(z) ≤ 0 for i = 1, . . . , m

hi(z) = 0 for i = 1, . . . , p
z ∈ Z

(2.1)

Solutions are usually computed by recursive algorithms which start from an
initial guess z0 and at step k generate a point zk such that the sequence
{f(zk)}k=0,1,2,... converges to J∗ as k increases. These algorithms recursively
use and/or solve conditions for optimality, i.e., analytical conditions that a
point z must satisfy in order to be an optimizer. For instance, for convex,
unconstrained optimization problems with a smooth cost function the best
known optimality criterion requires the gradient to vanish at the optimizer,
i.e., z is an optimizer if and only if ∇f(z) = 0.

Next we will briefly summarize necessary and sufficient optimality condi-
tions for unconstrained optimization problems.

Necessary conditions (unconstrained problem)

Theorem 2.1. Suppose that f : Rs → R is differentiable at z̄. If there
exists a vector d such that ∇f(z̄)′d < 0, then there exists a δ > 0 such that
f(z̄ + λd) < f(z̄) for all λ ∈ (0, δ).
The vector d in the theorem above is called descent direction. In a given
point z̄ a descent direction d satisfies the condition ∇f(z̄)′d < 0. Theo-
rem 2.1 states that if a descent direction exists at a point z̄, then it is
possible to move from z̄ towards a new point z̃ whose associated cost f(z̃)
is lower than f(z̄). The smaller ∇f(z̄)′d is the smaller will be the cost at
the new point f(z̃). The direction of steepest descent ds at a given point

11
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z̄ is defined as the normalized direction where ∇f(z̄)′ds < 0 is minimized.

The direction ds of steepest descent is ds = − ∇f(z̄)
‖∇f(z̄)‖ .

Two corollaries of Theorem 2.1 are stated next.

Corollary 2.1. Suppose that f : Rs → R is differentiable at z̄. If z̄ is a
local minimizer, then ∇f(z̄) = 0.

Corollary 2.2. Suppose that f : Rs → R is twice differentiable at z̄. If z̄
is a local minimizer, then ∇f(z̄) = 0 and the Hessian ∇2f(z̄) is positive
semidefinite.

Sufficient condition (unconstrained problem)

Theorem 2.2. Suppose that f : Rs → R is twice differentiable at z̄. If
∇f(z̄) = 0 and the Hessian of f(z) at z̄ is positive definite, then z̄ is a
local minimizer

Necessary and sufficient condition (unconstrained problem)

Theorem 2.3. Suppose that f : Rs → R is differentiable at z̄. If f is
convex, then z̄ is a global minimizer if and only if ∇f(z̄) = 0.

The proofs of the theorems presented above can be found in Chapters 4 and
8.6.1 of [23].

When the optimization is constrained and the cost function is not suffi-
ciently smooth, the conditions for optimality become more complicated. The
intent of this chapter is to give an overview of some important optimality
criteria for constrained nonlinear optimization. The optimality conditions de-
rived in this chapter will be the main building blocks for the theory developed
later in this book.

2.2 Lagrange Duality Theory

Consider the nonlinear program (2.1). Let J∗ be the optimal value. Denote
by Z the domain of cost and constraints (1.5). Any feasible point z̄ provides
an upper bound to the optimal value f(z̄) ≥ J∗. Next we will show how to
generate a lower bound on J∗.

Starting from the standard nonlinear program (2.1) we construct another
problem with different variables and constraints. The original problem (2.1)
will be called primal problem while the new one will be called dual prob-
lem. First, we augment the objective function with a weighted sum of the
constraints. In this way the Lagrange function L is obtained

L(z, u, v) = f(z) + u1g1(z) + . . . + umgm(z)+
+v1h1(z) + . . . + vphp(z)

(2.2)
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where the scalars u1, . . . , um, v1, . . . , vp are real. We can write equation (2.2)
in the compact form

L(z, u, v) , f(z) + u′g(z) + v′h(z), (2.3)

where u = [u1, . . . , um]′, v = [v1, . . . , vp]
′ and L : Rs × Rm × Rp → R. The

components ui and vi are called Lagrange multipliers or dual variables. Note
that the i-th dual variable ui is associated with the i-th inequality constraint
of problem (2.1), the i-th dual variable vi is associated with the i-th equality
constraint of problem (2.1).

Let z be a feasible point: for arbitrary vectors u ≥ 0 and v we trivially
obtain a lower bound on f(z)

L(z, u, v) ≤ f(z). (2.4)

We minimize both sides of equation (2.4)

inf
z∈Z, g(z)≤0, h(z)=0

L(z, u, v) ≤ inf
z∈Z, g(z)≤0, h(z)=0

f(z) (2.5)

in order to reconstruct the original problem on the right-hand side of the
expression. Since for arbitrary u ≥ 0 and v

inf
z∈Z, g(z)≤0, h(z)=0

L(z, u, v) ≥ inf
z∈Z

L(z, u, v), (2.6)

we obtain
inf
z∈Z

L(z, u, v) ≤ inf
z∈Z, g(z)≤0, h(z)=0

f(z). (2.7)

Equation (2.7) implies that for arbitrary u ≥ 0 and v the solution to

inf
z

L(z, u, v), (2.8)

provides us with a lower bound to the original problem. The “best” lower
bound is obtained by maximizing problem (2.8) over the dual variables

sup
(u,v), u≥0

inf
z∈Z

L(z, u, v) ≤ inf
z∈Z, g(z)≤0, h(z)=0

f(z).

Define the dual cost Θ(u, v) as follows

Θ(u, v) , inf
z∈Z

L(z, u, v) ∈ [−∞, +∞]. (2.9)

Then the Lagrange dual problem is defined as

sup
(u,v), u≥0

Θ(u, v). (2.10)
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The dual cost Θ(u, v) is the optimal value of an unconstrained opti-
mization problem. Problem (2.9) is called Lagrange dual subproblem. Only
points (u, v) with Θ(u, v) > −∞ are interesting for the Lagrange dual prob-
lem. A point (u, v) will be called dual feasible if u ≥ 0 and Θ(u, v) > −∞.
Θ(u, v) is always a concave function since it is the pointwise infimum
of a family of affine functions of (u, v). This implies that the dual problem
is a convex optimization problem (max of a concave function over a convex
set) even if the original problem is not convex. Therefore, it is much easier
to solve the dual problem than the primal (which is in general non-convex).
However, in general the solution to the dual problem is only a lower bound
of the primal problem:

sup
(u,v), u≥0

Θ(u, v) ≤ inf
z∈Z, g(z)≤0, h(z)=0

f(z)

Such a property is called weak duality. In a simpler form, let J∗ and d∗ be
the primal and dual optimal value, respectively,

J∗ = inf
z∈Z, g(z)≤0, h(z)=0

f(z) (2.11a)

d∗ = sup
(u,v), u≥0

Θ(u, v) (2.11b)

then, we always have
J∗ ≥ d∗ (2.12)

and the difference J∗− d∗ is called optimal duality gap. The weak duality
inequality (2.12) holds also when d∗ and J∗ are infinite. For example, if
the primal problem is unbounded below, so that J∗ = −∞, we must have
d∗ = −∞, i.e., the Lagrange dual problem is infeasible. Conversely, if the dual
problem is unbounded above, so that d∗ = +∞, we must have J∗ = +∞,
i.e., the primal problem is infeasible.

2.2.1 Strong Duality and Constraint Qualifications

If d∗ = J∗, then the duality gap is zero and we say that strong duality
holds:

sup
(u,v), u≥0

Θ(u, v) = inf
z∈Z, g(z)≤0, h(z)=0

f(z) (2.13)

This means that the best lower bound obtained by solving the dual prob-
lem coincides with the optimal cost of the primal problem. In general, strong
duality does not hold, even for convex primal problems. Constraint qualifi-
cations are conditions on the constraint functions which imply strong duality
for convex problems. A detailed discussion on constraints qualifications can
be found in Chapter 5 of [23].
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A well known simple constraint qualification is the “Slater’s condition”:

Definition 2.1 (Slater’s condition). Consider problem (2.1). There exists
ẑ ∈ Rs which belongs to the relative interior of the problem domain Z, which
is feasible (g(ẑ) ≤ 0, h(ẑ) = 0) and for which gj(ẑ) < 0 for all j for which gj

is not an affine function.

Remark 2.1. Note that Slater’s condition reduces to feasibility when all in-
equality constraints are linear.

Theorem 2.4 (Slater’s theorem). Consider the primal problem (2.11a)
and its dual problem (2.11b). If the primal problem is convex and Slater’s
condition holds then d∗ > −∞ and d∗ = J∗.

Note that Slater’s theorem states that Slater’s condition implies strong du-
ality for convex problems and that the dual optimal value is attained when
d∗ > −∞.

2.2.2 Certificate of Optimality

Consider the (primal) optimization problem (2.1) and its dual (2.10). Any
feasible point z give us information about an upper bound on the cost, i.e.,
J∗ ≤ f(z). If we can find a dual feasible point (u, v) then we can establish
a lower bound on the optimal value of the primal problem: Θ(u, v) ≤ J∗. In
summary, without knowing the exact value of J∗ we can give a bound on
how suboptimal a given feasible point is. In fact, if z is primal feasible and
(u, v) is dual feasible then Θ(u, v) ≤ J∗ ≤ f(z). Therefore z is ε-suboptimal,
with ε equal to primal-dual gap, i.e., ε = f(z)−Θ(u, v).

The optimal value of the primal (and dual) problems will lie in the same
interval

J∗, d∗ ∈ [Θ(u, v), f(z)].

For this reason (u, v) is also called a certificate that proves the (sub)optimality
of z. Optimization algorithms make extensive use of such criteria. Primal-
Dual algorithms iteratively solve primal and dual problems and generate a
sequence of primal and dual feasible points zk, (uk, vk), k ≥ 0 until a certain
ε is reached. The condition

f(zk)−Θ(uk, vk) < ε,

for terminating the algorithm guarantees that when the algorithm termi-
nates, zk is ε-suboptimal. If strong duality holds the condition can be met
for arbitrarily small tolerances ε.
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2.3 Complementary Slackness

Consider the (primal) optimization problem (2.1) and its dual (2.10). Assume
that strong duality holds. Suppose that z∗ and (u∗, v∗) are primal and dual
feasible with zero duality gap (hence, they are primal and dual optimal):

f(z∗) = Θ(u∗, v∗)

By definition of the dual problem, we have

f(z∗) = inf
z

(
f(z) + u∗′g(z) + v∗′h(z)

)

Therefore
f(z∗) ≤ f(z∗) + u∗′g(z∗) + v∗′h(z∗) (2.14)

and since h(z∗) = 0, u∗ ≥ 0 and g(z∗) ≤ 0 we have

f(z∗) ≤ f(z∗) + u∗′g(z∗) ≤ f(z∗) (2.15)

From the last equation we can conclude that u∗′g(z∗) =
∑m

i=1 u∗
i gi(z

∗) = 0
and since u∗

i ≥ 0 and gi(z
∗) ≤ 0, we have

u∗
i gi(z

∗) = 0, i = 1, . . . , m (2.16)

Conditions (2.16) are called complementary slackness conditions. Com-
plementary slackness conditions can be interpreted as follows. If the i-th con-
straint of the primal problem is inactive at optimum (gi(z

∗) < 0) then the
i-th dual optimizer has to be zero (u∗

i = 0). Vice versa, if the i-th dual opti-
mizer is different from zero (u∗

i > 0), then the i-th constraint is active at the
optimum (gi(z

∗) = 0).
Relation (2.16) implies that the inequality in (2.14) holds as equality

f(z∗)+
∑

i

u∗
i gi(z

∗)+
∑

j

v∗j hj(z
∗) = min

z∈Z


f(z) +

∑

i

u∗
i gi(z) +

∑

j

v∗j hj(z)


 .

(2.17)
Therefore, complementary slackness implies that z∗ is a minimizer of L(z, u∗, v∗).

2.4 Karush-Kuhn-Tucker Conditions

Consider the (primal) optimization problem (2.1) and its dual (2.10). As-
sume that strong duality holds. Assume that the cost functions and con-
straint functions f , gi, hi are differentiable. Let z∗ and (u∗, v∗) be primal
and dual optimal points, respectively. Complementary slackness implies that
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z∗ minimizes L(z, u∗, v∗) under no constraints (equation (2.17)). Since f , gi,
hi are differentiable, the gradient of L(z, u∗, v∗) must be zero at z∗

∇f(z∗) +
∑

i

u∗
i∇gi(z

∗) +
∑

j

v∗j∇hj(z
∗) = 0.

In summary, the primal and dual optimal pair z∗, (u∗, v∗) of an optimiza-
tion problem with differentiable cost and constraints and zero duality gap,
have to satisfy the following conditions:

∇f(z∗) +

m∑

i=1

u∗
i∇gi(z

∗) +

p∑

j=1

v∗j∇hi(z
∗) = 0, (2.18a)

u∗
i gi(z

∗) = 0, i = 1, . . . , m (2.18b)

u∗
i ≥ 0, i = 1, . . . , m (2.18c)

gi(z
∗) ≤ 0, i = 1, . . . , m (2.18d)

hj(z
∗) = 0 j = 1, . . . , p (2.18e)

where equations (2.18d)-(2.18e) are the primal feasibility conditions, equa-
tion (2.18c) is the dual feasibility condition and equations (2.18b) are the
complementary slackness conditions.

Conditions (2.18a)-(2.18e) are called the Karush-Kuhn-Tucker (KKT)
conditions. The KKT conditions are necessary conditions for any primal-
dual optimal pair if strong duality holds and the cost and constraints are
differentiable, i.e., any primal and dual optimal points z∗, (u∗, v∗) must sat-
isfy the KKT conditions (2.18). If the primal problem is also convex then
the KKT conditions are sufficient, i.e., a primal dual pair z∗, (u∗, v∗) which
satisfies conditions (2.18a)-(2.18e) is a primal dual optimal pair with zero
duality gap.

There are several theorems which characterize primal and dual optimal
points z∗ and (u∗, v∗) by using KKT conditions. They mainly differ on the
type of constraint qualification chosen for characterizing strong duality. Next
we report just two examples.

If a convex optimization problem with differentiable objective and con-
straint functions satisfies Slater’s condition, then the KKT conditions provide
necessary and sufficient conditions for optimality:

Theorem 2.5 (pag. 244 in [23]). Consider problem (2.1) and let Z be a
nonempty set of Rs. Suppose that problem (2.1) is convex and that cost and
constraints f , gi and hi are differentiable at a feasible z∗. If problem (2.1)
satisfies Slater’s condition then z∗ is optimal if and only if there are (u∗, v∗)
that, together with z∗, satisfy the KKT conditions (2.18).

If a convex optimization problem with differentiable objective and constraint
functions has linearly independent set of active constraints then the KKT
conditions provide necessary and sufficient conditions for optimality:
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Theorem 2.6 (Section 4.37 in [23]). Consider problem (2.1) and let Z be
a nonempty open set of Rs. Let z∗ be a feasible solution and A = {i : gi(z

∗) =
0} be the set of active constraints at z∗. Suppose cost and constraints f , gi

are differentiable at z∗ for all i and that hi are continuously differentiable
at z∗ for all i. Further, suppose that ∇gi(z

∗) for i ∈ A and ∇hi(z
∗) for

i = 1, . . . , p, are linearly independent. If z∗, (u∗, v∗) are primal and dual
optimal points, then they satisfy the KKT conditions (2.18). In addition, if
problem (2.1) is convex, then z∗ is optimal if and only if there are (u∗, v∗)
that, together with z∗, satisfy the KKT conditions (2.18).

The KKT conditions play an important role in optimization. In a few special
cases it is possible to solve the KKT conditions (and therefore, the opti-
mization problem) analytically. Many algorithms for convex optimization are
conceived as, or can be interpreted as, methods for solving the KKT condi-
tions as Boyd and Vandenberghe observe in [57].

The following example [23] shows a convex problem where the KKT con-
ditions are not fulfilled at the optimum. In particular, both the constraint
qualifications of Theorem 2.6 and Slater’s condition in Theorem 2.5 are vio-
lated.

Example 2.1. [23] Consider the convex optimization problem

min z1

subj. to (z1 − 1)2 + (z2 − 1)2 ≤ 1
(z1 − 1)2 + (z2 + 1)2 ≤ 1

(2.19)

z2

z1

(1, 1)

(1,−1)

∇g1(1, 0)

∇g2(1, 0)

∇f(1, 0)

Fig. 2.1 Constraints, feasible set and gradients of Example 2.1

From the graphical interpretation in Figure 2.1 it is immediate that the feasi-
ble set is a single point z̄ = [1, 0]′. The optimization problem does not satisfy
Slater’s conditions and moreover z̄ does not satisfy the constraint qualifica-
tions in Theorem 2.6. At the optimum z̄ equations (2.18a) cannot be satisfied
for any pair of real numbers u1 and u2.
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2.4.1 KKT geometric interpretation

A geometric interpretation of the KKT conditions is depicted in Figure 2.2
for an optimization problem in two dimensions with inequality constraints
and no equality constraints.

z1

z2

∇g1(z1)
∇g2(z1)

−∇f(z1)

∇g2(z2)

∇g3(z2)

−∇f(z2)

g(z) ≤ 0

g 1
(z

)
≤

0 g
2 (z) ≤

0

g3
(z)
≤

0

Fig. 2.2 Graphical interpretation of KKT conditions [23]

Equation (2.18a), can be rewritten as

−∇f(z) =
∑

i∈A

ui∇gi(z), ui ≥ 0. (2.20)

where A = {1, 2} in z1 and A = {2, 3} in z2. This means that the negative
gradient of the cost at the optimum −∇f(z∗) (which represents the direction
of steepest descent) has to belong to the cone spanned by the gradients of
the active constraints ∇gi, (since inactive constraints have the corresponding
Lagrange variables equal to zero). In Figure 2.2, condition (2.20) is not satis-
fied at z2. In fact, one can move within the set of feasible points g(z) ≤ 0 and
decrease f , which implies that z2 is not optimal. At point z1, on the other
hand, the cost f can only decrease if some constraint is violated. Any move-
ment in a feasible direction increases the cost. Conditions (2.20) are fulfilled
and hence z1 is optimal.





Chapter 3

Polyhedra, Polytopes and Simplices

Polyhedra will be the fundamental geometric objects used in this book. There
is a vast body of literature related to polyhedra because they are important
for a wide range of applications. In this chapter we introduce the main def-
initions and the algorithms which describe some operations on polyhedra.
Most definitions given here are standard. For additional details the reader is
referred to [270, 126, 102]. First, we recall a few basic general set definitions
and operations.

3.1 General Set Definitions and Operations

An n-dimensional ball B(xc, ρ) is the set B(xc, ρ) = {x ∈ Rn : ‖x−xc‖2 ≤
ρ}. The vector xc is the center of the ball and ρ is the radius.

Affine sets are sets described by the solutions of a system of linear equa-
tions:

F = {x ∈ Rn : Ax = b, with A ∈ Rm×n, b ∈ Rm}. (3.1)

If F is an affine set and x̄ ∈ F , then the translated set V = {x− x̄ : x ∈ F}
is a subspace.

The affine combination of a finite set of points x1, . . . , xk belonging to
Rn is defined as the point λ1x1 + . . . + λkxk where

∑k
i=1 λi = 1.

The affine hull of K ⊆ Rn is the set of all affine combinations of points
in K and it is denoted as aff(K):

aff(K) = {λ1x1 + . . . + λkxk : xi ∈ K, i = 1, . . . , k,
k∑

i=1

λi = 1} (3.2)

The affine hull of K is the smallest affine set that contains K, in the following
sense: if S is any affine set with K ⊆ S, then aff(K)⊆ S.

21
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The dimension of an affine set, affine combination or affine hull is the
dimension of the largest ball of radius ρ > 0 included in the set.

Example 3.1. The set

F = {x ∈ R2 : x1 + x2 = 1}

is an affine set in R2 of dimension one. The points x1 = [0, 1]′ and x2 = [1, 0]′

belong to the set F . The point x̄ = −0.2x1 + 1.2x2 = [1.2,−0.2]′ is an affine
combination of points x1 and x2. The affine hull of x1 and x2, aff({x1, x2}),
is the set F .

Convex sets have been defined in Section 1.2
The convex combination of a finite set of points x1, . . . , xk belonging to

Rn is defined as the point λ1x1 + . . . + λkxk where
∑k

i=1 λi = 1 and λi ≥ 0,
i = 1, . . . , k

The convex hull of a set K ⊆ Rn is the set of all convex combinations of
points in K and it is denoted as conv(K):

conv(K) , {λ1x1 + . . . + λkxk : xi ∈ K, λi ≥ 0, i = 1, . . . , k,
k∑

i=1

λi = 1}.

(3.3)
The convex hull of K is the smallest convex set that contains K, in the
following sense: if S is any convex set with K ⊆ S, then conv(K)⊆ S.

Example 3.2. Consider three points x1 = [1, 1]′, x2 = [1, 0]′, x3 = [0, 1]′ in
R2. The point x̄ = λ1x1 + λ2x2 + λ3x3 with λ1 = 0.2, λ2 = 0.2, λ3 = 0.6 is
x̄ = [0.4, 0.8]′ and it is a convex combination of the points {x1, x2, x3}. The
convex hull of {x1, x2, x3} is the triangle plotted in Figure 3.1. Note that
any set in R2 strictly contained in the triangle and containing {x1, x2, x3}
is non-convex.

A cone spanned by a finite set of points K = {x1, . . . , xk} is defined as

cone(K) = {
k∑

i=1

λixi, λi ≥ 0, i = 1, . . . , k}. (3.4)

We define cone(K) = {0} if K is the empty set.

Example 3.3. Consider three points x1 = [1, 1, 1]′, x2 = [1, 2, 1]′, x3 = [1, 1, 2]′

in R3. The cone spanned by of {x1, x2, x3} is an unbounded set. Its restric-
tion to the box of size 10 is depicted in Figure 3.2.
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Fig. 3.1 Illustration of a convex hull of three points x1 = [1, 1]′, x1 = [1, 0]′, x3 =
[0, 1]′
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Fig. 3.2 Illustration of a cone spanned by the three points x1 = [1, 1, 1]′, x2 =
[1, 2, 1]′, x3 = [1, 1, 2]′

The Minkowski sum of two sets P ,Q ⊆ Rn is defined as

P ⊕Q , {x + y : x ∈ P , y ∈ Q}. (3.5)

By definition, any point in P ⊕ Q can be written as the sum of two points,
one in P and one in Q. For instance, the Minkowski sum of two balls (P and
Q) centered in the origin and of radius 1, is a ball (P ⊕ Q) centered in the
origin and of radius 2.

3.2 Polyhedra Definitions and Representations

In the following we give two definitions of a polyhedron. They are mathemat-
ically (but not algorithmically) equivalent. The proof of equivalence is not
trivial and can be found in [105].

An H-polyhedron P in Rn denotes an intersection of a finite set of closed
halfspaces in Rn:

P = {x ∈ Rn : Ax ≤ b} (3.6)
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where Ax ≤ b is the usual shorthand form for a system of inequalities, namely
aix ≤ bi, i = 1, . . . , m, where a1, . . . , am are the rows of A, and b1, . . . , bm

are the components of b. In Figure 3.3 a two-dimensional H-polyhedron is
plotted.

a ′
1 x
≤

b
1

a
′ 2
x
≤

b 2

a ′
3x ≤ b3

a
′

4
x
≤

b 4
a ′
5x ≤ b5

Fig. 3.3 H-polyhedron

A V-polyhedron P in Rn denotes the Minkowski sum of the convex hull of
a finite set of points {V1, . . . , Vk} of Rn and the cone generated by a finite
set of vectors {y1, . . . , yk′} of Rn:

P = conv(V )⊕ cone(Y ) (3.7)

for some V = [V1, . . . , Vk] ∈ Rn×k, Y = [y1, . . . , yk′ ] ∈ Rn×k′

. The main
theorem for polyhedra states that any H-polyhedron is a V-polyhedron and
vice-versa [105](pag. 30).

An H-polytope is a bounded H-polyhedron (in the sense that it does not
contain any ray {x + ty : t ≥ 0}). A V-polytope is a bounded V-polyhedron

P = conv(V ) (3.8)

The main theorem for polytopes states that any H-polytope is a V-polytope
and vice-versa [105](pag. 29).

The dimension of a polytope (polyhedron) P is the dimension of its affine
hull and is denoted by dim(P). We say that a polytope P ⊂ Rn, P = {x ∈
Rn : P xx ≤ P c}, is full-dimensional if dim(P) = n or, equivalently, if it is
possible to fit a nonempty n-dimensional ball in P ,
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∃x ∈ Rn, ǫ > 0 : B(x, ǫ) ⊂ P , (3.9)

or, equivalently,

∃x ∈ Rn, ǫ > 0 : ‖δ‖2 ≤ ǫ⇒ P x(x + δ) ≤ P c. (3.10)

Otherwise, we say that polytope P is lower-dimensional. A polytope is re-
ferred to as empty if

∄x ∈ Rn : P xx ≤ P c. (3.11)

Furthermore, if ‖P x
i ‖2 = 1, where P x

i denotes the i-th row of a matrix P x,
we say that the polytope P is normalized.

Let P be a polyhedron. A linear inequality c′z ≤ c0 is said to be valid for
P if it is satisfied for all points z ∈ P . A face of P is any nonempty set of
the form

F = P ∩ {z ∈ Rs : c′z = c0} (3.12)

where c′z ≤ c0 is a valid inequality for P . The dimension of a face is the
dimension of its affine hull. For the valid inequality 0z ≤ 0 we get that P
is a face of P . All faces of P satisfying F ⊂ P are called proper faces and
have dimension less than dim(P). The faces of dimension 0,1, dim(P)-2 and
dim(P)-1 are called vertices, edges, ridges, and facets, respectively. The next
proposition summarizes basic facts about faces.

Proposition 3.1. Let P be a polytope, V the set of all its vertices and F a
face.

1. P is the convex hull of its vertices: P=conv(V ).
2. F is a polytope.
3. Every intersection of faces of P is a face of P.
4. The faces of F are exactly the faces of P that are contained in F .
5. The vertices of F are exactly the vertices of P that are contained in F .

A d-simplex is a polytope of Rd with d + 1 vertices.
In this book we will work mostly with H-polyhedra and H-polytopes. This

choice has important consequences for algorithms implementation and their
complexity. As a simple example, a unit cube in Rd can be described through
2d equalities as anH-polytope, but requires 2d points in order to be described
as a V-polytope. We want to mention here that many efficient algorithms that
work on polyhedra require both H and V representations. In Figure 3.4 the
H-representation and the V-representation of the same polytope in two di-
mensions are plotted. Consider Figure 3.3 and notice that the fifth inequality
can be removed without changing the polyhedron. Inequalities which can be
removed without changing the polyhedron described by the original set are
called redundant. The representation of anH-polyhedron is minimal if it does
not contain redundant inequalities. Detecting whether an inequality is redun-
dant for an H-polyhedron requires solving a linear program, as described in
Section 3.4.4.

TrungDuong
Rectangle
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(a) V-representation. The

vertices V P
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(b) H-representation. The
hyperplanes P x

i x = P c
i , i =

1, . . . , 7 are depicted as lines.

Fig. 3.4 Illustration of a polytope in H- and V- representation.

By definition a polyhedron is a closed set. In this book we will also work
with sets which are not closed but whose closure is a polyhedron. For this
reason the two following non-standard definitions will be useful.

Definition 3.1 (Open Polyhedron (Polytope)). A set C ⊆ Rn is called
open polyhedron (polytope) if it is open and its closure is a polyhedron (poly-
tope).

Definition 3.2 (Neither Open nor Closed Polyhedron (Polytope)).
A set C ⊆ Rn is called neither open nor closed polyhedron (polytope) if it is
neither open nor closed and its closure is a polyhedron (polytope).

3.3 Polytopal Complexes

According to our definition every polytope represents a convex, compact (i.e.,
bounded and closed) set. In this book we will also encounter sets that are
disjoint or non-convex but can be represented by the union of finite number
of polytopes. Therefore, it is useful to define the following mathematical
concepts.

Definition 3.3 (P-collection). A set C ⊆ Rn is called a P-collection (in
Rn) if it is a collection of a finite number of n-dimensional polytopes, i.e.

C = {Ci}NC

i=1, (3.13)

where Ci := {x ∈ Rn : Cx
i x ≤ Cc

i }, dim(Ci) = n, i = 1, . . . , NC , with
NC <∞. �



3.3 Polytopal Complexes 27

Definition 3.4 (Underlying Set). The underlying set of a P-collection C =
{Ci}NC

i=1 is the

C :=
⋃

P∈C
P =

NC⋃

i=1

Ci. (3.14)

�

Example 3.4. A collection R = {[−2,−1], [0, 2], [2, 4]} is a P-collection in R1

with the underlying set R = [−2,−1] ∪ [0, 4]. As another example, R =
{[−2, 0], [−1, 1], [0, 2]} is a P-collection in R1 with underlying set R = [−2, 2].
Clearly, polytopes that define a P-collection can overlap, while the underlying
set can be disconnected and non-convex. �

Usually it is clear from the context if we are talking about the P-
collection or referring to the underlying set of a P-collection. Therefore for
simplicity, we use the same notation for both.

Definition 3.5 (Strict Polyhedral Partition). A collection of sets {Ci}NC

i=1

is a strict partition of a set C if (i)
⋃NC

i=1 Ci = C and (ii) Ci ∩ Cj = ∅, ∀i 6= j.

Moreover {Ci}NC

i=1 is a strict polyhedral partition of a polyhedral set C if {Ci}NC

i=1

is a strict partition of C and C̄i is a polyhedron for all i, where C̄i denotes the
closure of the set Ci.

Definition 3.6 (Polyhedral Partition). A collection of sets {Ci}NC

i=1 is a

partition of a set C if (i)
⋃NC

i=1 Ci = C and (ii) (Ci\∂Ci)∩ (Cj\∂Cj) = ∅, ∀i 6= j.

Moreover {Ci}NC

i=1 is a polyhedral partition of a polyhedral set C if {Ci}NC

i=1 is
a partition of C and Ci is a polyhedron for all i. The set ∂Cj is the boundary
of the set Cj .

Note that in a strict partition some of the sets Ci must be open or neither
open nor closed. In a partition all the sets may be closed and points on the
closure of a particular set may also belong to one or several other sets. Also,
note that a polyhedral partition is a special class of P-collection.

3.3.1 Functions on Polytopal Complexes

Definition 3.7. A function h(θ) : Θ → Rk, where Θ ⊆ Rs, is piecewise affine
(PWA) if there exists a strict partition R1,. . . ,RN of Θ and h(θ) = Hiθ + ki,
∀θ ∈ Ri, i = 1, . . . , N .

Definition 3.8. A function h(θ) : Θ → Rk, where Θ ⊆ Rs, is piecewise affine
on polyhedra (PPWA) if there exists a strict polyhedral partition R1,. . . ,RN

of Θ and h(θ) = Hiθ + ki, ∀θ ∈ Ri, i = 1, . . . , N .



28 3 Polyhedra, Polytopes and Simplices

Definition 3.9. A function h(θ) : Θ → R, where Θ ⊆ Rs, is piecewise
quadratic (PWQ) if there exists a strict partition R1,. . . ,RN of Θ and
h(θ) = θ′Hiθ + kiθ + li, ∀θ ∈ Ri, i = 1, . . . , N .

Definition 3.10. A function h(θ) : Θ → R, where Θ ⊆ Rs, is piecewise
quadratic on polyhedra (PPWQ) if there exists a strict polyhedral partition
R1,. . . ,RN of Θ and h(θ) = θ′Hiθ + kiθ + li, ∀θ ∈ Ri, i = 1, . . . , N .

As long as the function h(θ) we are defining is continuous it is not im-
portant if the partition constituting the domain of the function is strict or
not. If the function is discontinuous at points on the closure of a set, then
this function can only be defined if the partition is strict. Otherwise we may
obtain several conflicting definitions of function values (or set-valued func-
tions). Therefore for the statement of theoretical results involving discontinu-
ous functions we will always assume that the partition is strict. For notational
convenience, however, when working with continuous functions we will make
use of partitions rather than strict partitions.

3.4 Basic Operations on Polytopes

We will now define some basic operations and functions on polytopes. Note
that although we focus on polytopes and polytopic objects most of the oper-
ations described here are directly (or with minor modifications) applicable to
polyhedral objects. Additional details on polytope computation can be found
in [270, 126, 102]. All operations and functions described in this chapter are
contained in the MPT toolbox [167, 166].

3.4.1 Convex Hull

The convex hull of a set of points V = {V i}NV

i=1, with V i ∈ Rn, is a polytope
defined as

conv(V ) = {x ∈ Rn : x =

NV∑

i=1

αiV i, 0 ≤ αi ≤ 1,

NV∑

i=1

αi = 1}. (3.15)

The convex hull operation is used to switch from a V-representation of a
polytope to an H-representation. The convex hull of a union of polytopes
Ri ⊂ Rn, i = 1, . . . , NR, is a polytope

conv

(
NR⋃

i=1

Ri

)
:= {x ∈ Rn : x =

NR∑

i=1

αixi, xi ∈ Ri, 0 ≤ αi ≤ 1,

NR∑

i=1

αi = 1}.

(3.16)
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An illustration of the convex hull operation is given in Figure 3.5. Construc-
tion of the convex hull of a set of polytopes is an expensive operation which
is exponential in the number of facets of the original polytopes. An efficient
software implementation is available in [101].

3.4.2 Envelope

The envelope of two H-polyhedra P = {x ∈ Rn : P xx ≤ P c} and Q = {x ∈
Rn : Qxx ≤ Qc} is an H-polyhedron

env(P ,Q) = {x ∈ Rn : P̄ xx ≤ P̄ c, Q̄xx ≤ Q̄c}, (3.17)

where P̄ xx ≤ P̄ c is the subsystem of P xx ≤ P c obtained by removing all the
inequalities not valid for the polyhedron Q, and Q̄xx ≤ Q̄c is defined in a
similar way with respect to Qxx ≤ Qc and P [33]. In a similar fashion, the
definition can be extended to the case of the envelope of a P-collection. An
illustration of the envelope operation is depicted in Figure 3.6. The compu-
tation of the envelope is relatively cheap since it only requires the solution of
one LP for each facet of P and Q. Note that the envelope of two (or more)
polytopes is not necessarily a bounded set (e.g. when P ∪Q is shaped like a
star).

3.4.3 Vertex Enumeration

The operation of extracting the vertices of a polytope P given in H-
representation is referred to as vertex enumeration. This operation is the
dual of the convex hull operation and the algorithmic implementation is
identical to a convex hull computation, i.e., given a set of extreme points
V = {Vi}NV

i=1 = vert(P) of a polytope P given in H-representation it holds
that P = conv(V ), where the operator vert denotes the vertex enumeration.
The necessary computational effort is exponential in the number of input
facets. Two different approaches for vertex enumeration are commonly used:
the double description method [104] and reverse search [11]. An efficient im-
plementation of the double description method is available in [101].

3.4.4 Minimal Representation

We say that a polytope P ⊂ Rn, P = {x ∈ Rn : P xx ≤ P c} is in a min-
imal representation if the removal of any row in P xx ≤ P c would change it
(i.e., if there are no redundant constraints). The computation of the minimal
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(b) Convex hull of R.

Fig. 3.5 Illustration of the convex hull operation.
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(b) Envelope env(R).

Fig. 3.6 Illustration of the envelope operation.

representation (henceforth referred to as polytope reduction) of polytopes is
discussed in [102] and generally requires to solve one LP for each half-space
defining the non-minimal representation of P . We summarize this simple
implementation of the polytope reduction in Algorithm 3.1. An improved al-
gorithm for polytope reduction is discussed in [244] where the authors com-
bine the procedure outlined in Algorithm 3.1 with heuristic methods, such
as bounding-boxes and ray-shooting, to discard redundant constraints more
efficiently.

It is straightforward to see that a normalized, full-dimensional polytope P
has a unique minimal representation. Note that ‘unique’ here means that for
P := {x ∈ Rn : P xx ≤ P c} the matrix [P xP c] consists of the unique set of
row vectors, the rows order is irrelevant. This fact is very useful in practice.
Normalized, full-dimensional polytopes in a minimal representation allow us
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to avoid any ambiguity when comparing them and very often speed-up other
polytope manipulations.

Algorithm 3.1 (Polytope in minimal representation)

INPUT P = {x : P xx ≤ P c}, with P x ∈ R
nP ×n, P c ∈ R

nP

OUTPUT Q = {x : Qxx ≤ Qc} := minrep(P)
LET I ← {1, . . . , nP }
FOR i = 1 TO nP

LET I ← I \ {i}
LET f∗ ← max

x
P x

i x, subj. to P x
(I)x ≤ P c

(I), P x
i x ≤ P c

i + 1

IF f∗ > P c
i THEN I ← I ∪ {i}

END

LET Qx = P x
(I)

, Qc = P c
(I) �

Remark 3.1 (Full-dimensional polytopes). Throughout this book we will mostly
work with full-dimensional polytopes. The reason is twofold: i) numerical
issues with lower-dimensional polytopes, and, more importantly, ii) full-
dimensional polytopes are sufficient for describing solutions to the problems
we handle in this book. For the same reason the MPT toolbox [167] only deals
with full-dimensional polytopes. Polyhedra and lower-dimensional polytopes
(with the exception of the empty polytope) are not considered. �

3.4.5 Chebychev Ball

The Chebychev Ball of a polytope P = {x ∈ Rn : P xx ≤ P c}, with
P x ∈ RnP ×n, P c ∈ RnP , corresponds to the largest radius ball B(xc, R) with
center xc, such that B(xc, R) ⊂ P . The center and radius of the Chebychev
ball can be easily found by solving the following linear optimization problem

max
xc,R

R (3.18a)

subj. to P x
i xc + R‖P x

i ‖2 ≤ P c
i , i = 1, . . . , nP , (3.18b)

where P x
i denotes the i-th row of P x. This can be proven as follows. Any

point x of the ball can be written as x = xc + v where v is a vector of length
less or equal to R. Therefore the center and radius of the Chebychev ball can
be found by solving the following optimization problem

max
xc,R

R (3.19a)

subj. to P x
i (xc + v) ≤ P c

i , ∀ v such that ‖v‖2 ≤ R, i = 1, . . . , nP ,
(3.19b)

Consider the i-th constraint
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P x
i (xc + v) ≤ P c

i , ∀ v such that ‖v‖2 ≤ R

This can be written as

P x
i xc ≤ P c

i − P x
i v, ∀ v such that ‖v‖2 ≤ R (3.20)

Constraint (3.20) is satisfied ∀ v such that ‖v‖2 ≤ R if and only if it is satis-

fied at v =
P x

i
′

‖P x
i ‖2

R. Therefore we can rewrite the optimization problem (3.19)

as the linear program (3.18).
If the radius obtained by solving (3.18) is R = 0, then the polytope is lower-

dimensional. If R < 0, then the polytope is empty. Therefore, an answer to the
question “is polytope P full-dimensional/empty?” is obtained at the expense
of only one linear program. Furthermore, for a full-dimensional polytope we
also get a point xc that is in the strict interior of P . However, the center of
a Chebyshev Ball xc in (3.18) is not necessarily a unique point (e.g. when
P is a rectangle). There are other types of unique interior points one could
compute for a full-dimensional polytope, e.g., center of the largest volume
ellipsoid, analytic center, etc., but those computations involve the solution of
Semi-Definite Programs (SDPs) and therefore they are more expensive than
the Chebyshev Ball computation [57]. An illustration of the Chebyshev Ball
is given in Figure 3.7.
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Fig. 3.7 Illustration of the Chebychev ball contained in a polytope P.

3.4.6 Projection

Given a polytope P = {[x′y′]′ ∈ Rn+m : P xx + P yy ≤ P c} ⊂ Rn+m the
projection onto the x-space Rn is defined as

projx(P) := {x ∈ Rn : ∃y ∈ Rm : P xx + P yy ≤ P c}. (3.21)
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An illustration of a projection operation is given in Figure 3.8. Current pro-
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Fig. 3.8 Illustration of a projection of a 3-dimensional polytope P onto a plane.

jection methods that can operate in general dimensions can be grouped into
four classes: Fourier elimination [75, 156], block elimination [14], vertex based
approaches [103] and wrapping-based techniques [149]. For a good introduc-
tion to projection, we refer the reader to [149] and the references therein.

3.4.7 Set-Difference

The set-difference of two polytopes Y and R0

R = Y \R0 := {x ∈ Rn : x ∈ Y, x /∈ R0}, (3.22)

in general, can be a nonconvex and disconnected set and can be described
as a P-collection R =

⋃m
i=1Ri, where Y =

⋃m
i=1Ri

⋃
(R0

⋂Y). The P-
collection R =

⋃m
i=1Ri can be computed by consecutively inverting the half-

spaces defining R0 as described in the following Theorem 3.1.
Note that here we use the term P-collection in the dual context of both P-

collection and its underlying set (cf. Definitions 3.3 and 3.4). The precise
statement would say that R = Y \ R0, where R is underlying set of the P-
collection R = {Ri}mi=1. However, whenever it is clear from context, we will
use the former, more compact form.

Theorem 3.1. [39] Let Y ⊆ Rn be a polyhedron, R0 , {x ∈ Rn : Ax ≤ b},
and R̄0 , {x ∈ Y : Ax ≤ b} = R0

⋂Y, where b ∈ Rm, R0 6= ∅ and Ax ≤ b
is a minimal representation of R0. Also let

Ri =

{
x ∈ Y :

Aix > bi

Ajx ≤ bj , ∀j < i

}
i = 1, . . . , m

Let R ,
⋃m

i=1Ri. Then, R is a P-collection and {R̄0,R1, . . . ,Rm} is a strict
polyhedral partition of Y.
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Proof: (i) We want to prove that given an x ∈ Y, then either x belongs
to R̄0 or to Ri for some i. If x ∈ R̄0, we are done. Otherwise, there exists
an index i such that Aix > bi. Let i∗ = min

i≤m
{i : Aix > bi}. Then x ∈ Ri∗ , as

Ai∗x > bi∗ and Ajx ≤ bj , ∀j < i∗, by definition of i∗.
(ii) Let x ∈ R̄0. Then there does not exist any i such that Aix > bi, which

implies that x 6∈ Ri, ∀i ≤ m. Let x ∈ Ri and take i > j. Because x ∈ Ri, by
definition of Ri (i > j) Ajx ≤ bj , which implies that x 6∈ Rj . 2

As an illustration for the procedure proposed in Theorem 3.1 consider the
two-dimensional case depicted in Figure 3.9(a). Here X is defined by the
inequalities {x−

1 ≤ x1 ≤ x+
1 , x−

2 ≤ x2 ≤ x+
2 }, and R0 by the inequalities

{g1 ≤ 0, . . . , g5 ≤ 0} where g1, . . ., g5 are linear in x. The procedure consists
of considering one by one the inequalities which define R0. Considering, for
example, the inequality g1 ≤ 0, the first set of the rest of the region X\R0 is
given by R1 = {g1 ≥ 0, x1 ≥ x−

1 , x−
2 ≤ x2 ≤ x+

2 }, which is obtained by re-
versing the sign of the inequality g1 ≤ 0 and removing redundant constraints
in X (see Figure 3.9(b)). Thus, by considering the rest of the inequalities

we get the partition of the rest of the parameter space X\R0 =
⋃5

i=1Ri, as
reported in Figure 3.9(d).

Remark 3.2. The set difference of two intersecting polytopes P and Q (or any
closed sets) is not a closed set. This means that some borders of polytopes
Ri from a P-collection R = P \Q are open, while other borders are closed.
Even though it is possible to keep track of the origin of particular borders
of Ri, thus specifying if they are open or closed, we are not doing so in the
algorithms described in this book nor in MPT [167, 166], cf. Remark 3.1. In
computations, we will henceforth only consider the closure of the sets Ri.

The set difference between two P-collections P and Q can be computed as
described in [20, 125, 220].

3.4.8 Pontryagin Difference

The Pontryagin difference (also known as Minkowski difference) of two poly-
topes P and Q is a polytope

P ⊖Q := {x ∈ Rn : x + q ∈ P , ∀q ∈ Q}. (3.23)

The Pontryagin difference can be efficiently computed for polytopes by solv-
ing a sequence of LPs as follows. Define the P and Q as

P = {y ∈ Rn : , P yy ≤ P b}, Q = {z ∈ Rn : Qzz ≤ Qb}, (3.24)
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Fig. 3.9 Two dimensional example: partition of the rest of the space X\R0.

then

W = P ⊖Q (3.25a)

= {x ∈ Rn : P yx ≤ P b −H(P y,Q)} (3.25b)

where the i-th element of H(P y,Q) is

Hi(P
y,Q) , max

x∈Q
P y

i x (3.26)

and P y
i is the i-th row of the matrix P y. Note that For special cases (e.g.

when Q is a hypercube), even more efficient computational methods exist
[159]. An illustration of the Pontryagin difference is given in Figure 3.10a.
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(b) Minkowski sum P ⊕Q.

Fig. 3.10 Illustration of the Pontryagin difference and Minkowski sum operations.

3.4.9 Minkowski Sum

The Minkowski sum of two polytopes P and Q is a polytope

P ⊕Q := {x + q ∈ Rn : x ∈ P , q ∈ Q}. (3.27)

The Minkowski sum is a computationally expensive operation which requires
either vertex enumeration and convex hull computation in n-dimensions or
a projection from 2n down to n dimensions. The implementation of the
Minkowski sum via projection is described below.

P = {y ∈ Rn : P yy ≤ P c}, Q = {z ∈ Rn : Qzz ≤ Qc},

it holds that

W = P ⊕Q

=
{
x ∈ Rn : x = y + z, P yy ≤ P c, Qzz ≤ Qc, y, z ∈ Rn

}

=
{
x ∈ Rn : ∃y ∈ Rn, subj. to P yy ≤ P c, Qz(x− y) ≤ Qc

}

=
{
x ∈ Rn : ∃y ∈ Rn, subj. to

[
0 P y

Qz −Qz

] [
x
y

]
≤
[
P c

Qc

]}

= projx

({
[x′y′] ∈ Rn+n :

[
0 P y

Qz −Qz

] [
x
y

]
≤
[
P c

Qc

]})
.

Both the projection and vertex enumeration based methods are implemented
in the MPT toolbox [167]. An illustration of the Minkowski sum is given in
Figure 3.10b.
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Remark 3.3. The Minkowski sum is not the complement of the Pontryagin
difference. For two polytopes P and Q, it holds that (P ⊖Q)⊕Q ⊆ P . This
is illustrated in Figure 3.11.
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Fig. 3.11 Illustration that (P ⊖Q)⊕Q ⊆ P.

3.4.10 Polytope Union

Consider the following basic problem in polyhedral computation: given two
polyhedra P ⊂ Rn and Q ⊂ Rn, decide whether their union is convex, and,
if so, compute it. There are three classes of algorithms for the given problem
depending on their representation: (1) P andQ are given inH-representation,
(2) P and Q are given in V-representation, (3) both H- and V-representations
are available for P and Q. Next we present an algorithm for case (1). Cases
(2), case (3) and the computational complexity of all three cases are discussed
in [33].

The following basic lemma, whose proof naturally follows from the def-
inition of convexity, will be used in the sequel to prove our main results.

Lemma 3.2. Let P and Q be convex polyhedra with V-representations conv(V )⊕
cone(R) and conv(W ) ⊕ cone(S), respectively. Then P ∪ Q is convex if and
only if P ∪ Q is a convex polyhedron with V-representation conv(V ∪W ) ⊕
cone(R ∪ S).

Recall the definition of envelope in Section 3.4.2. By definition, it is easy
to see that

P ∪Q ⊆ env(P ,Q). (3.28)

Note that the set env(P ,Q) does not depend on the H-representations of P
and Q.
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Theorem 3.2. P ∪Q is convex ⇔ P ∪Q = env(P ,Q).

Proof: Theorem 3.2 The “⇐” part is trivial, as env(P ,Q) is a convex set
by construction. In order to prove the “⇒” part, assume K , P∪Q is convex
and without loss of generality P , Q are full dimensional. The case dim(P) =
dim(Q) < n can be reduced to the case of full dimensional polyhedra in the
common embedding subspace. In the case dim(P) < dim(Q), P ∪ Q convex
implies P ⊂ Q, and therefore the proof is trivial.

Let conv(V )⊕ cone(R) and conv(W )⊕ cone(S) be V-representations of P
and Q, respectively. By Lemma 3.2, K = conv(V ∪W ) + cone(R ∪ S) is a
polyhedron, and has an H-representation. As, by (3.28), K ⊆ env(P ,Q), it is
enough to prove env(P ,Q) ⊆ K, by showing that all the inequalities in the
unique minimal representation are already in the inequalities representing
env(P ,Q). Suppose there is a facet inequality r′x ≤ s for K that is missing in
the H-representation of env(P ,Q). Let H = {x ∈ Rn : r′x = s}. Since the
inequality is missing in the H-representations of P and Q, dim(P∩H) ≤ n−2
and dim(Q ∩H) ≤ n− 2 because it is valid for P and is not in env(P ,Q) .
This implies that the facet K ∩ H of K cannot be the union of two convex
sets P ∩H and Q ∩H , because they have smaller dimensions than K ∩H .
This contradicts K = P ∪Q. ⊓⊔

Theorem 3.2 can be naturally generalized to the union of k polytopes.
Theorem 3.2 represents a result for convexity recognition of the union of
two H-polyhedra. It also leads to an algorithm for checking convexity of the
union, and for generating an H-representation of the union when it is convex.
Such algorithm is presented next.
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Algorithm 3.4.1

1 Construct env(P ,Q) by removing non-valid constraints

(see Fig. 3.6),

let Ãx ≤ α̃, B̃x ≤ β̃ be the set of removed constraints, and

let env(P ,Q) = {x : Cx ≤ γ} the resulting envelope;

2 Remove from env(P ,Q) possible duplicates

(Bj , βj) = (σAi, σαi), σ > 0;

3 for each pair Ãix ≤ α̃i, B̃jx ≤ β̃j do

4 Determine ǫ∗ by solving the linear program (LP)

ǫ∗ = max(x,ǫ) ǫ

subj. to Ãix ≥ α̃i + ǫ

B̃jx ≥ β̃j + ǫ

Cx ≤ γ;

/* ǫ∗ = −∞ if the LP is infeasible,

ǫ∗ =∞ if the LP is unbounded */

5 if ǫ∗ > 0, stop ; return nonconvex;

6 endfor ;

7 return env(P ,Q). /* P ∪Q is convex. */

Note that if ǫ∗ = 0 for each i, j as defined in step 3, then by Theorem 3.2 the
union is convex and equals env(P ,Q). On the other hand, ǫ∗ > 0 indicates
the existence of a point x ∈ env(P ,Q) outside P ∪Q.

For recognizing convexity and computing the union of k polyhedra, the
test can be modified by checking each k-tuple of removed constraints. Let m̃1,
. . ., m̃k be the number of removed constrains from the polyhedra P1, . . . ,Pk,
respectively. Then similarly to step 4,

∏k
i=1 m̃i linear programs need to be

solved in the general case.
Algorithm 3.4.1 provides an H-representation for P ∪Q (step 1). We prove

in next Proposition 3.2 that such representation is minimal, i.e. it contains
no redundant inequalities.

Proposition 3.2. If P and Q are given by minimal H-representation and are
full-dimensional then Algorithm 3.4.1 outputs a minimal H-representation of
P ∪Q.

Proof: Suppose P and Q are n-dimensional and given in minimal H-
representation. Take any inequality T given by the algorithm. We may as-
sume it comes from the representation of P . By the minimality and full-
dimensionality, it is a facet inequality for P . By definition, the facet F deter-
mined by T contains n affinely independent points of P . Since these points
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are also in P ∪Q, T is a facet inequality for P ∪Q. By the step 2 of the al-
gorithm, there is no other inequality in the output that determines the same
facet F . Therefore the output is minimal. ⊓⊔

Note that the full dimensionality of P and Q are necessary in Proposi-
tion 3.2.

3.4.11 Affine Mappings and Polyhedra

This section deals with the composition of affine mappings and polyhedra.
Consider a polyhedron P = {x ∈ Rn : P xx ≤ P c}, with P x ∈ RnP ×n and
an affine mapping f(z)

f : z ∈ Rm 7→ Az + b, A ∈ RmA×m, b ∈ RmA (3.29)

Let mA = n, we define the composition of P and f as the following polyhedron

P ◦ f , {z ∈ Rm : P xf(z) ≤ P c} = {z ∈ Rm : P xAz ≤ P c−P xb} (3.30)

Let m = n, we define the composition of f and P as the following polyhedron

f ◦ P , {y ∈ RmA : y = Ax + b ∀x ∈ Rn, P xx ≤ P c} (3.31)

The polyhedron f ◦ P in (3.31) can be computed as follows. Let us write P
in V-representation

P = conv(V ), (3.32)

and let us map the set of vertices V = {V1, . . . , Vk} through the transfor-
mation f . Because the transformation is affine, the set f ◦ P is simply the
convex hull of the transformed vertices

f ◦ P = conv(F ), F = {AV1 + b, . . . , AVk + b}. (3.33)

The polyhedron f ◦P in (3.31) can be computed immediately if mA = m = n
and A is invertible. In this case, from the definition in (3.31), x = A−1y−A−1b
and therefore

f ◦ P = {y ∈ RmA : P xA−1y ≤ P c + P xA−1b} (3.34)

Vertex enumeration can be avoided even if A is not invertible and mA ≥ m =
m by using a QR decomposition of the matrix A.

Remark 3.4. Often in the literature the symbol “◦” is not used for linear maps
f = Az. Therefore, AP refers to the operation A ◦ P and PA refers to the
operation P ◦A.



3.5 Operations on P-collections 41

3.5 Operations on P-collections

This section covers some results and algorithms which are specific to oper-
ations with P-collections. P-collections are unions of polytopes (see Defini-
tion 3.3) and therefore the set of states contained in a P-collection can be
represented in an infinite number of ways, i.e. the P-collection representation
is not unique. For example, one can subdivide any polytope P into a num-
ber of smaller polytopes whose union is a P-collection which covers P . Note
that the complexity of all subsequent computations depends strongly on the
number of polytopes representing a P-collection. The smaller the cardinality
of a P-collection, the more efficient the computations. The reader is referred
to [220, 219] for proofs and comments on computational efficiency.

3.5.1 Set-Difference

The first two results given here show how the set difference of a P-collection and
a P-collection (or polyhedron) may be computed.

Lemma 3.3. Let C ,
⋃

j∈{1,...,J} Cj be a P-collection, where all the Cj, j ∈
{1, . . . , J}, are nonempty polyhedra. If S is a nonempty polyhedron, then
C \ S =

⋃
j∈{1,...,J}(Cj \ S) is a P-collection.

Lemma 3.4. Let the sets C ,
⋃

j∈{1,...,J} Cj and D ,
⋃

y=1,...,Y Dy be P-

collections, where all the Cj, j ∈ {1, . . . , J}, and Dy, y ∈ {1, . . . , Y }, are

nonempty polyhedra. If E0 , C and Ey , Ey−1 \ Dy, y ∈ {1, . . . , Y } then
C \ D = EY is a P-collection.

That C ⊆ D can be easily verified since C ⊆ D ⇔ C \ D = ∅, similarly C = D
is also easily verified since

C = D ⇔ (C \ D = ∅ and D \ C = ∅)

Next, an algorithm for computing the Pontryagin difference of a P-
collection and a polytope is presented. If S and B are two subsets of Rn

then S ⊖ B = [Sc ⊕ (−B)]c where (·)c denotes the set complement. The fol-
lowing algorithm implements the computation of the Pontryagin difference
of a P-collection C , ∪j∈{1,...,J}Cj, where Cj, j ∈ {1, . . . , J} are polytopes in
Rn, and a polytope B ⊂ Rn.

Algorithm 3.5 (Pontryagin Difference for P-collections, C ⊖ B)
1. Input: P-collection C, polytope B;
2. H , env(C) (or H , conv(C));
3. D , H⊖ B;
4. E , H \ C;
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5. F , E ⊕ (−B);
6. G , D \ F ;
7. Output: P-collection G , C ⊖ B.

Remark 3.5. Note that H in Step 2 of Algorithm 3.5 can be any convex set
containing the P-collection C. The computation of H is generally more effi-
cient if the envelope operation is used instead of convex hull.

Remark 3.6. It is important to note that (
⋃

j∈{1,...,J} Cj)⊖B 6=
⋃

j∈{1,...,J}(Cj⊖
B), where B and Cj are polyhedra; hence, the relatively high computational
effort of computing the Pontryagin difference of a P-collection and a polytope.

Theorem 3.3 (Computation of Pontryagin Difference, [219]). The
output of Algorithm 3.5 is G = C ⊖ B.

Proof: It holds by definition that

D , H⊖ B = {x : x + w ∈ H, ∀w ∈ B},
E , H \ C = {x : x ∈ H and x /∈ C}.

By the definition of the Minkowski sum:

F , E ⊕ (−B) = {x : x = z + w, z ∈ E , w ∈ (−B)}
= {x : ∃w ∈ (−B), s.t. x + w ∈ E}.

By definition of the set difference:

D \ F , {x : x ∈ D and x /∈ F}
= {x ∈ D : ∄ w ∈ B s.t. x + w ∈ E}
= {x ∈ D : x + w /∈ E , ∀w ∈ B}.

From the definition of the set D:

D \ F = {x : x + w ∈ H and x + w /∈ E , ∀w ∈ B}

and from the definition of the set E and because C ⊆ H:

D \ F = {x : x + w ∈ H and (x + w /∈ H or x + w ∈ C) ∀w ∈ B}
= {x : x + w ∈ C, ∀w ∈ B}
= C ⊖ B.

⊓⊔
Algorithm 3.5 is illustrated on a sample P-collection in Figures 3.12(a)

to 3.12(f).
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Fig. 3.12 Graphical illustration of Algorithm 3.5.

Remark 3.7. It should be noted that Algorithm 3.5 for computation of the
Pontryagin difference is conceptually similar to the algorithm proposed in
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[237, 158]. However, in general the envelope operation employed in step 2
significantly reduces the number of sets obtained at step 4, which in turn re-
sults in fewer Minkowski set additions. Since the computation of a Minkowski
set addition is expensive, a runtime improvement can be expected.

3.5.2 Polytope Covering

The problem of checking if some P polytope is covered with the union of
other polytopes, i.e. a P-collection Q := ∪iQi is discussed in this section.
We consider two related problems:

polycover: Check if P ⊆ Q, and
regiondiff: Compute P-collection R = P \ Q.

Clearly, polycover is just a special case of regiondiff, where the resulting
P-collection R = ∅. Also, it is straightforward to extend the above problems
to the case where both P and Q are both P-collections.

One idea of solving the polycover problem is inspired by the following
observation

P ⊆ Q ⇔ P = ∪i(P ∩Qi).

Therefore, we could create Ri = Qi∩P , for i = 1, . . . , NQ and then compute
the union of the collection of polytopes {Ri} by using the polyunion algo-
rithm for computing the convex union of H-polyhedra reported discussed in
Section 3.4.10. If polyunion succeeds (i.e., the union is a convex set) and the
resulting polytope is equal to P then P is covered by Q, otherwise it is not.
However, this approach is computationally very expensive. In the Appendix A

two alternative approaches for checking if P ⊆ (
⋃NQ

i=1Qi) are presented.

3.5.3 Union of P-collections

Consider a P-collection P = {Pi}pi=1. We study the problem of finding a
minimal representation on P by merging one or more polyhedra belonging to
the P-collection. Clearly one could use the polyunion algorithm presented in
Section 3.4.10 for all possible subsets of the P-collection and solve the problem
by comparing all solutions. However this approach is not computationally
efficient.

Typically, merging problems are formally defined by using the definitions
of “hyperplane arrangements” and “markings”. Next we introduce such def-
initions and formally define thre classes of merging problems. We refer the
reader to the Appendix B for more details on the topic.
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Fig. 3.13 Arrangement of four hyperplanes (lines) in R = R
2 with markings m ∈

M(R)

3.5.3.1 Hyperplane Arrangements and Markings

Let A be a collection of n distinct hyperplanes {Hi}i=1,...,n in the d-
dimensional Euclidian space Rd, where each hyperplane is given by a linear
equality Hi = {x ∈ Rd : a′

ix = bi}. We say that the hyperplanes of A are
in general position, if there exists no pair of parallel hyperplanes, and if any
point of Rd belongs at most to d hyperplanes. Let SV : Rd → {−, +}n be the
simplified sign vector defined as

SVi(x) =

{
− if a′

ix ≤ bi,
+ if a′

ix > bi
for i ∈ {1, 2, . . . , n} . (3.35)

Note that in general, the sign vector is defined such that its image is {−, 0, +},
where the ’0’ element corresponds to a′

ix = bi. Cells with ’0’ markings are
lower-dimensional.

Consider the set Pm = {x ∈ Rd : SV(x) = m} for a given sign vector m.
This set is called a cell of the arrangement and is a polyhedron as it is defined
by linear inequalities. We will refer to m as the marking of the polyhedron
(or cell) Pm in the hyperplane arrangement A (see Fig. 3.13). Let M(R) be
the image of the function SV(x) for x ∈ R ⊆ Rd, namely the collection of all
the possible markings of all the points in R.

Let the ’∗’ element extend the sign vector in the sense that it denotes the
union of cells, where the associated hyperplane is not a facet of the associated
polyhedron Pm. As an example, consider in Fig. 3.13 the two polyhedra with
the markings m1 = −−−− and m2 = +−−−. Then, m = ∗−−− is equivalent
to {m1, m2} and refers to Pm1 ∪ Pm2 .

The cell enumeration problem in a hyperplane arrangement amounts to
enumerate all the elements of the set M(R). Let #M(R) be the number of
cells identified by M(R). Buck’s formula [65] defines the upper bound
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|M | ≤
d∑

i=0

( n
i ) = O(nd), (3.36)

with the equality satisfied if the hyperplanes are in general position and
R = Rd.

The cell enumeration problem admits an optimal solution with time and
space complexity O(nd) [92]. An alternative approach based on reverse search
was presented in [12], improved in [98] and implemented in [97]. Reverse
search is an exhaustive search technique that can be considered as a special
graph search. This search technique has been used to design efficient algo-
rithms for various enumeration problems such as enumeration of all spanning
trees and cells in hyperplane arrangements.

3.5.3.2 Standard Merging Problems

Consider the following assumption

Assumption 3.1 The polyhedra of the P-collectionare cells in a (global) hy-
perplane arrangement, of which the markings are available.

and pose the following three problems.

Problem 3.1 (Disjoint Optimal Complexity Reduction). Given an ini-
tial set of polyhedra {Pi}pi=1 satisfying Assumption 3.1, the disjoint opti-
mal complexity reduction problem amounts to derive a new set of polyhedra
{Qi}i=1,...,q with the following properties: (i) the union of the new polyhedra
is equal to the union of the original ones, i.e. (

⋃q
i=1Qi) = (

⋃p
i=1 Pi), (ii)

q is minimal, i.e. there exists no set {Qi}i=1,...,q with a smaller number of
polyhedra, (iii) the new polyhedra are mutually disjoint, i.e. Qi 6= Qj for
all i, j ∈ {1, . . . , q}, i 6= j, and (iv) the new polyhedra are formed as unions
of the old ones, i.e. for each Qj , j ∈ {1, . . . , q}, there exists an index set
I ⊆ {1, . . . , p}, such that Qj =

⋃
i∈I Pi.

This problem is equivalent to an optimal merging problem. Next, we remove
Requirements (iii) and (iv) thus allowing for overlaps in the resulting poly-
hedra.

Problem 3.2 (Non-Disjoint Optimal Complexity Reduction). Given
an initial set of polyhedra {Pi}i=1,...,p satisfying Assumption 3.1, the non-
disjoint optimal complexity reduction problem amounts to derive a new set
of polyhedra {Qi}i=1,...,q with Properties (i) and (ii) as in Problem 3.1.

Strictly speaking, the second problem is not a merging problem, but a more
general optimal set covering problem, which is equivalent to logic minimiza-
tion frequently used in digital circuit design. Nevertheless, we will sometimes
use the term merging instead of complexity reduction.
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Next, the assumption that the original polyhedra are cells in a hyper-
plane arrangement and that markings are available are removed, but require
additionally that each polyhedron is represented with a minimal number of
facets. This problem can be considered as the general non-disjoint optimal
complexity reduction problem for PWA functions.

Problem 3.3 (General Non-Disjoint Optimal Complexity Reduc-
tion). Given an initial set of polyhedra {Pi}i=1,...,p where Assumption 3.1 is
not required to hold, the general non-disjoint optimal complexity reduction
problem amounts to derive a new set of polyhedra {Qi}i=1,...,q with Proper-
ties (i) and (ii) as in Problem 3.1, and (iii) the number of facets for each Qi

being minimal.

All three tasks are non-trivial, as the union of polyhedra is in general non-
convex, and because we are aiming at deriving the optimal solution, more
specifically, the set of polyhedra with the minimal cardinality. Indeed, the
problems are NP-hard (see [77] and references therein). As a direct conse-
quence, fast algorithms are unlikely to exist leaving us either with rather long
computation times or suboptimal solutions.

Our interest in this problem will be clear later in this book (Section 10.2)
when computing the PWA state-feedback control law to optimal control prob-
lems. Once the PWA state-feedback control law has been derived, the mem-
ory requirement and the on-line computation time are linear in the number
of polyhedra of the feedback law when using standard brute force search.
Therefore, we will be interested in the problem of finding a minimal repre-
sentation of piecewise affine (PWA) systems, or more specifically, for a given
PWA system, we solve the problem of deriving a PWA system, that is both
equivalent to the former and minimal in the number of regions. This is done
by associating with different feedback law a different color, and we collect
the polyhedra with the same color. Then, for a given color, we try to merge
the corresponding P-collection by solving one of the three problem described
above. If the number of polyhedra with the same affine dynamic is large, the
number of possible polyhedral combinations for merging explodes. As most
of these unions are not convex or even not connected and thus cannot be
merged, trying all combinations using standard techniques based on linear
programming (LP) is prohibitive. Furthermore, our objective here is not only
to reduce the number of polyhedra but rather to find the minimal and thus
optimal number of disjoint polyhedra. This problem is known to be NP-hard,
and to the best of our knowledge, it is still an open problem. In Appendix B
algorithms for the solutions of the three posed problems are presented.





Chapter 4

Linear and Quadratic Optimization

4.1 Linear Programming

When the cost and the constraints of the continuous optimization prob-
lem (1.4) are affine, then the problem is called linear program (LP). The
most general form of a linear program is

infz c′z
subj. to Gz ≤W

(4.1)

where G ∈ Rm×s, W ∈ Rm. Linear programs are convex optimization prob-
lems.

Two other common forms of linear programs include both equality and
inequality constraints:

infz c′z
subj. to Gz ≤W

Geqz = Weq

(4.2)

where Geq ∈ Rp×s, Weq ∈ Rp, or only equality constraints and positive
variables:

infz c′z
subj. to Geqz = Weq

z ≥ 0
(4.3)

By standard and simple manipulations [57](p. 146) it is always possible to
convert one of the three forms (4.1), (4.2) and (4.3) into the other.

4.1.1 Graphical Interpretation and Solutions Properties

Let P be the feasible set (1.6) of problem (4.1). As Z = Rs, this implies that
P is a polyhedron defined by the inequality constraints in (4.1). If P is empty,

49
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Fig. 4.1 Graphical Interpretation of the Linear Program Solution, ki < ki−1

then the problem is infeasible. We will assume for the following discussion
that P is not empty. Denote by J∗ the optimal value and by Z∗ the set of
optimizers of problem (4.1)

Z∗ = argminz∈P c′z

Three cases can occur.

Case 1. The LP solution is unbounded, i.e., J∗ = −∞.
Case 2. The LP solution is bounded, i.e., J∗ > −∞ and the optimizer is

unique. Z∗ is a singleton.
Case 3. The LP solution is bounded and there are multiple optima. Z∗ is

an uncountable subset of Rs which can be bounded or unbounded.

The two dimensional geometric interpretation of the three cases discussed
above is depicted in Figure 4.1. The level curves of the cost function c′z
are represented by the parallel lines. All points z belonging both to the line
c′z = ki and to the polyhedron P are feasible points with an associated cost
ki, with ki < ki−1. Solving (4.1) amounts to finding a feasible z which belongs
to the level curve with the smallest cost ki. Since the gradient of the cost is
c′, the direction of steepest descent is −c′.

Case 1 is depicted in Figure 4.1(a). The feasible set P is unbounded. One
can move in the direction of steepest descent −c and be always feasible,
thus decreasing the cost to −∞. Case 2 is depicted in Figure 4.1(b). The
optimizer is unique and it coincides with one of the vertices of the feasible
polyhedron. Case 3 is depicted in Figure 4.1(c). The whole bold facet of the
feasible polyhedron P is optimal, i.e., the cost for any point z belonging to
the facet equals the optimal value J∗. In general, the optimal facet will be a
facet of the polyhedron P parallel to the hyperplane c′z = 0.

From the analysis above we can conclude that the optimizers of any
bounded LP always lie on the boundary of the feasible polyhedron P .
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4.1.2 Dual of LP

Consider the LP (4.1)
infz c′z
subj. to Gz ≤W

(4.4)

with z ∈ Rs and G ∈ Rm×s.
The Lagrange function as defined in (2.3) is

L(z, u) = c′z + u′(Gz −W ).

The dual cost is

Θ(u) = inf
z

L(z, u) = inf
z

(c′ + u′G)z − u′W =

{
−u′W if−G′u = c
−∞ if−G′u 6= c

Since we are interested only in cases where Θ is finite, from the relation above
we conclude that the dual problem is

supu −u′W
subj. to −G′u = c

u ≥ 0
(4.5)

which can be rewritten as

infu W ′u
subj. to G′u = −c

u ≥ 0
(4.6)

4.1.3 KKT condition for LP

The KKT conditions (2.18a)-(2.18e) for the LP (4.1) become

G′u = −c, (4.7a)

(Gjz −Wj)uj = 0, (4.7b)

u ≥ 0, (4.7c)

Gz ≤ W (4.7d)

which are: primal feasibility (4.7d), dual feasibility (4.7a) and (4.7c) and
slackness complementary conditions (4.7b).
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4.1.4 Active Constraints and Degeneracies

For the topics covered in this book the number of constraints active at the
optimum deserves particular attention.

Consider the LP (4.1). Let J , {1, . . . , m} be the set of constraint indices.
For any A ⊆ J , let GA and WA be the submatrices of G and W , respectively,
comprising the rows indexed by A and denote with Gj and Wj the j-th row
of G and W , respectively. Let z be a feasible point and consider the set of
active and inactive constraints at z:

A(z) , {j ∈ J : Gjz = Wj}
NA(z) , {j ∈ J : Gjz < Wj}.

(4.8)

The cardinality of A(z) depends on the cases discussed in Section (4.1.1)
and on the shape of the feasible set.

Case 1 - Unbounded solution. Since a minimizer is not defined in this
case, the number of active constraints is not defined.

Case 2 - Bounded solution, unique optimum. The number of active
constraints can be any number between s and m (included).
Note that even if the description of the feasible polyhedron P is minimal,
then the cardinality of A(z∗) can be greater than s. For instance this is the
case if the optimum is the vertex of a pyramid with a rectangular base in
three dimensions. Also, if the description of the feasible polyhedron P is
not minimal, i.e., Gz ≤W contains redundant constraints, the cardinality
of A(z∗) can be higher than s. Such a case is depicted in Figure 4.2 where
constraints 1, 3, 5, 6 are active at the optimum.

Case 3 - Bounded solution, multiple optima. The number of active
constraints can be any number between 1 and m (included). Note that if
the description of the polyhedron P is minimal, the cardinality of A(z∗)
can be smaller than s at all points z∗ ∈ Z∗ contained in the interior of the
optimal facet.

This discussion on the constraints that are active at the optimum is fun-
damental throughout this book. For this reason we introduce the following
concept of primal degeneracy.

Definition 4.1. The LP (4.1) is said to be primal degenerate if there exists
a z∗ ∈ Z∗ such that the number of active constraints at z∗ is greater than
the number of variables s.

Figure 4.2 depicts a case of primal degeneracy.

Definition 4.2. The LP (4.1) is said to be dual degenerate if its dual problem
is primal degenerate.
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Fig. 4.2 Primal Degeneracy in a Linear Program.

For the above discussion we conclude that if the primal problem has mul-
tiple optima, then the dual problem is primal degenerate (i.e., the primal
problem is dual degenerate). The converse is not always true. In order to
show this observation and better understand primal and dual degeneracy we
discuss a simple example next.

Example 4.1. Primal and dual degeneracies
Consider the following pair of primal and dual LPs

Primal
max [1 c]x
[

0 1
1 1

]
x ≤

[
1
1

]
, x ≥ 0

Dual
min [1 1]y
[

0 1
1 1

]
y ≥

[
1
c

]
, y ≥ 0

(4.9)

where c is a parameter.

Case 1. Figure 4.3 depicts the situation for c = −1. We see that both the
primal and the dual problem exhibit no degeneracies for c = −1. There
is a unique optimizer for the primal LP at (1, 0), which is defined by
the intersection of two active constraints, exactly as many as the number
of decision variables. The same holds true in the dual space, where the
optimal dual variable is (0, 1).

Case 2. The situation changes when c = 1, as portrayed in Figure 4.4.
Consider the two solutions for the primal LP denoted with 1 and 2 in
Figure 4.4(a) and referred to as “basic” solutions. Basic solution 1 is primal
non-degenerate, since it is defined by exactly as many active constraints as
there are variables. Basic solution 2 is primal degenerate, since it is defined
by three active constraints, i.e., more than two. Any convex combination



54 4 Linear and Quadratic Optimization

non-degenerate primal

max

x1

x2

c = −1

(a) Case 1 - Primal
LP

dual non-degenerate

min

-1

y1

y2

c = −1

[
1
1

]
′

y = −1

(b) Case 1 - Dual LP

Fig. 4.3 LP with no Primal or Dual Degeneracy

optimal primal solutions

max

1

2

x1

x2

c = 1

(a) Case 2 - Primal LP

dual degenerate

min

y1

y2

c = 1

[
1
1

]
′

y = 1

(b) Case 2 - Dual LP

Fig. 4.4 LP with Primal and Dual Degeneracy

of optimal solutions 1 and 2 is also optimal. This continuum of optimal
solutions in the primal problem corresponds to a degenerate solution in
the dual space, hence the primal problem is dual-degenerate. That is, the
dual problem is primal-degenerate. Both basic solutions correspond to a
degenerate solution point in the dual space, as seen on Figure 4.4(b). In
conclusion, Figures 4.4(a) and 4.4(b) show an example of a primal problem
with multiple optima and the corresponding dual problem being primal
degenerate.

Case 3. We want to show that the statement “if the dual problem is primal
degenerate then the primal problem has multiple optima” is, in general,
not true. Consider case 2 and switch dual and primal problems, i.e.,call the
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“dual problem” primal problem and the “primal problem” dual problem
(this can be done since the dual of the dual problem is the primal problem).
Then, we have a dual problem which is primal degenerate in solution 2
while the primal problem does not present multiple optima.

4.1.5 Convex Piecewise Linear Optimization

Consider a continuous and convex piecewise affine function J : R ⊆ Rs → R:

J(z) = c′iz + di for [ z ] ∈ Ri, (4.10)

where {Ri}pi=1 are polyhedral sets with disjoint interiors, R ,
⋃p

i=1Ri is a
polyhedron and ci ∈ Rs, di ∈ R. Then, J(z) can be rewritten as [230]

J(z) = max
i=1,...,k

{c′iz + di} ∀ z ∈ R (4.11)

Consider the following optimization problem

J∗ = minz J(z)
subj. to Gz ≤W
z ∈ R

(4.12)

where the cost function has the form (4.10).
By using the equivalence between the form (4.10) and (4.11) of continu-

ous and convex piecewise affine functions, it can be easily proven that the
optimization problem (4.12) with J(z) defined in (4.10) can be solved by the
following linear program [57]:

J∗ = minz,ε ε
subj. to Gz ≤W

c′iz + di ≤ ε, i = 1, . . . , k
z ∈ R

(4.13)

The previous result can be extended to the sum of continuous and convex
piecewise affine functions. Let J : R ⊆ Rs → R be defined as:

J(z) =

r∑

j=1

Jj(z) (4.14)

with
Jj(z) = max

i=1,...,kj
{cj

i

′
z + dj

i } ∀ z ∈ R (4.15)

Then the following optimization problem
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Fig. 4.5 Convex PWA Function Described as the Max of Affine Functions

J∗ = minz J(z)
subj. to Gz ≤W
z ∈ R

(4.16)

where the cost function has the form (4.14) can be solved by the following
linear program:

J∗ = minz,ε1,...,εr ε1 + · · ·+ εr

subj. to Gz ≤W

c1
i
′
z + d1

i ≤ ε1, i = 1, . . . , k1

c2
i
′
z + d2

i ≤ ε2, i = 1, . . . , k2

...
cr
i
′z + dr

i ≤ εr, i = 1, . . . , kr

z ∈ R

(4.17)

Remark 4.1. Note that the results of this section can be immediately applied
to the minimization of one or infinity norms. Note that for any y ∈ R, |y| =
max {y,−y}. Therefore for any Q ∈ Rk×s and p ∈ Rk:

‖Qz − p‖∞ = max{Q1
′z + p1,−Q1

′z − p1, . . . , Qk
′z + pk,−Qk

′z − pk}

and

‖Qz − p‖1 =
k∑

i=1

|Qi
′z + pi| =

k∑

i=1

max{Qi
′z + pi,−Qi

′z − pi}
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4.2 Quadratic Programming

The continuous optimization problem (1.4) is called quadratic program (QP)
if the constraint functions are affine and the cost function is a convex
quadratic function. In this book we will use the form:

minz
1
2z′Hz + q′z + r

subj. to Gz ≤W
(4.18)

where z ∈ Rs, H = H ′ ≻ 0 ∈ Rs×s, q ∈ Rs, G ∈ Rm×s. In (4.18) the constant
term can be omitted if one is only interested in the optimizer.

Other QP forms often include equality and inequality constraints.

minz
1
2z′Hz + q′z + r

subj. to Gz ≤W
Geqz = Weq

(4.19)

4.2.1 Graphical Interpretation and Solutions Properties

Let P be the feasible set (1.6) of problem (4.18). As Z = Rs, this implies
that P is a polyhedron defined by the inequality constraints in (4.18). The
two dimensional geometric interpretation is depicted in Figure 4.6. The level
curves of the cost function 1

2z′Hz + q′z + r are represented by the ellipsoids.
All the points z belonging both to the ellipsoid 1

2z′Hz + q′z + r = ki and to
the polyhedron P are feasible points with an associated cost ki. The smaller
is the ellipsoid, the smaller is its cost ki. Solving (4.18) amounts to finding
a feasible z which belongs the level curve with the smallest cost ki. Since H
is strictly positive definite, the QP (4.18) cannot have multiple optima nor
unbounded solutions. If P is not empty the optimizer is unique. Two cases
can occur if P is not empty:

Case 1. The optimizer lies strictly inside the feasible polyhedron (Fig-
ure 4.6(a)).

Case 2. The optimizer lies on the boundary of the feasible polyhedron
(Figure 4.6(b)).

In case 1 the QP (4.18) is unconstrained and we can find the minimizer
by setting the gradient equal to zero

Hz∗ + q = 0. (4.20)

Since H ≻ 0 we obtain z∗ = −H−1q.
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P

0.5z′Hz + q′z + r = ki

z∗

(a) Quadratic Program - Case 1

P

0.5z′Hz + q′z + r = ki

z∗

(b) Quadratic Program - Case 2

Fig. 4.6 Graphical Interpretation of the Quadratic Program Solution

4.2.2 Dual of QP

Consider the QP (4.18)

minz
1
2z′Hz + q′z

subj. to Gz ≤W

The Lagrange function as defined in (2.3) is

L(z, u) = {1
2
z′Hz + q′z + u′(Gz −W )}

The the dual cost is

Θ(u) = min
z
{1
2
z′Hz + q′z + u′(Gz −W )} (4.21)

and the dual problem is

max
u≥0

min
z
{1
2
z′Hz + q′z + u′(Gz −W )}. (4.22)

For a given u the Lagrange function 1
2z′Hz + q′z + u′(Gz −W ) is convex.

Therefore it is necessary and sufficient for optimality that the gradient is zero

Hz + q + G′u = 0.

From the equation above we can derive z = −H−1(q +G′u) and substituting
this in equation (4.21) we obtain:

Θ(u) = −1

2
u′(GH−1G′)u − u′(W + GH−1q)− 1

2
q′H−1q (4.23)
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By using (4.23) the dual problem (4.22) can be rewritten as:

minu
1
2u′(GH−1G′)u + u′(W + GH−1q) + 1

2q′H−1q
subj. to u ≥ 0

(4.24)

4.2.3 KKT condition for QP

Consider the QP (4.18). Then, ∇f(z) = Hz + q, gi(z) = G′
iz−Wi (where G′

i

is the i-th row of G), ∇gi(z) = Gi. The KKT conditions become

Hz + q + G′u = 0 (4.25a)

ui(G
′
iz −Wi) = 0 (4.25b)

u ≥ 0 (4.25c)

Gz −W ≤ 0 (4.25d)

4.2.4 Active Constraints and Degeneracies

Consider the definition of active set A(z) in (4.8). The cardinality of A(z∗)
depends on the cases discussed in Section (4.2.1).

Case 1. A(z∗) = {∅}.
Case 2. A(z∗) is a nonempty subset of {1, . . . , m}.

We define primal and dual degeneracy as in the LP case.

Definition 4.3. The QP (4.18) is said to be primal degenerate if there exists
a z∗ ∈ Z∗ such that the number of active constraints at z∗ is greater than
the number of variables s.

Definition 4.4. The QP (4.18) is said to be dual degenerate if its dual prob-
lem is primal degenerate.

As we have assumed the Hessian H to be strictly positive definite, the pri-
mal problem has a unique optimum. However, as discussed in Section 4.1.4
the dual problem could still be primal degenerate. By considering the dual
problem (4.24) it is clear that dual degeneracy cannot occur as there can be
at most m active constraints on m variables.

4.2.5 Constrained Least-Squares Problems

The problem of minimizing the convex quadratic function
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‖Az − b‖22 = z′A′Az − 2b′Az + b′b (4.26)

is an (unconstrained) QP. It arises in many fields and has many names, e.g.,
linear regression or least-squares approximation. From (4.20) we find the
minimizer

z∗ = (A′A)−1A′b , A†b

When linear inequality constraints are added, the problem is called con-
strained linear regression or constrained least-squares, and there is no longer
a simple analytical solution. As an example we can consider regression with
lower and upper bounds on the variables, i.e.,

minz ‖Az − b‖22
subj. to li ≤ zi ≤ ui, i = 1, . . . , n,

(4.27)

which is a QP. In chapter 6.3.1 we will show how to compute an analytical
solution to the constrained least-squares problem.

4.3 Mixed-Integer Optimization

As discussed in Section 1.1.2, if the decision set Z in the optimization prob-
lem (1.2) is the Cartesian product of an integer set and a real Euclidian space,
i.e., Z ⊆ {[zc, zb] : zc ∈ Rsc , zb ∈ {0, 1}sb}, then the optimization problem is
said to be mixed-integer. In this section Mixed Integer Linear Programming
(MILP) and Mixed Integer Quadratic Programming (MIQP) are introduced.

4.3.1 Mixed Integer Linear Programming

When the cost and the constraints of the optimization problem (1.10) are
affine, then the problem is called mixed integer linear program (MILP). The
form of an MILP used in this book is

inf [zc,zb] c′czc + c′bzb + d
subj. to Gczc + Gbzb ≤W

zc ∈ Rsc , zb ∈ {0, 1}sb

(4.28)

where Gc ∈ Rm×sc , Gb ∈ Rm×sb , W ∈ Rm. MILPs with equality and in-
equality constraints take the form:

inf [zc,zb] c′czc + c′bzb + d
subj. to Gczc + Gbzb ≤W

Geq,czc + Geq,bzb = Weq

zc ∈ Rsc , zb ∈ {0, 1}sb

(4.29)
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where Geq,b ∈ Rp×sb , Weq ∈ Rp. Mixed integer linear programs are nonconvex
optimization problems, in general. Often the term d is omitted from the
cost since it does not affect the optimizer, but d has to be considered when
computing the optimal value. Form (4.29) can always be translated into the
form (4.28) by standard and simple manipulations.

For a fixed integer value z̄b of zb, the MILP (4.28) becomes a linear pro-
gram:

infzc c′czc + (c′bz̄b + d)
subj. to Gczc ≤W −Gbz̄b

zc ∈ Rsc

(4.30)

Therefore, the simplest way to interpret and solve an MILP is to enumerate
the 2sb integer values of the variable zb and solve the corresponding LPs. By
comparing the 2sb optimal costs one can find the optimizer and the optimal
cost of the MILP (4.29). Although this approach is not used in practice, it
gives a simple way for proving what is stated next.

Let Pẑb
be the feasible set (1.6) of problem (4.28) for a fixed zb = ẑb. The

cost is an affine function defined over Rsc and Pẑb
is a polyhedron defined by

the inequality constraints

Gczc ≤W −Gbẑb (4.31)

Denote by J∗ the optimal value and by Z∗ the set of optimizers of prob-
lem (4.28)

Z∗ = arg minzb∈{0,1}sb ,zc∈Pzb
c′czc

If Pzb
is empty for all zb, then problem (4.28) is infeasible. Five cases can

occur if Pzb
is not empty for at last one zb ∈ {0, 1}sb:

Case 1. The MILP solution is unbounded, i.e., J∗ = −∞.
Case 2. The MILP solution is bounded, i.e., J∗ > −∞ and the optimizer

is unique. Z∗ is a singleton.
Case 3. The MILP solution is bounded and there are infinitely many op-

tima corresponding to the same integer value. Z∗ is the Cartesian product
of an infinite dimensional subset of Rs and an integer number z∗b .

Case 4. The MILP solution is bounded and there are finitely many optima
corresponding to different integer values. Z∗ is a finite set of optimizers
{(z∗1,c, z

∗
1,b), . . . , (z

∗
N,c, z

∗
N,b)}.

Case 5. The union of Case 3 and Case 4.

4.3.2 Mixed Integer Quadratic Programming

When the cost of the optimization problem (1.10) is quadratic and the con-
straints are affine, then the problem is called mixed integer quadratic program
(MIQP). The most general form of an MIQP is
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inf [zc,zb]
1
2z′Hz + q′z + r

subj. to Gczc + Gbzb ≤W
Geq,czc + Geq,bzb = Weq

zc ∈ Rsc , zb ∈ {0, 1}sb

z = [zc, zb], s = sc + sd

(4.32)

where H � 0 ∈ Rs×s, Gc ∈ Rm×sc , Gb ∈ Rm×sb , W ∈ Rm, Geq,c ∈ Rp×sc ,
Geq,b ∈ Rp×sb , Weq ∈ Rp. Mixed integer quadratic programs are nonconvex
optimization problems, in general. Often the term d is omitted from the
cost since it does not affect the optimizer, but d has to be considered when
computing the optimal value. In this book we will often use the form of MIQP
with inequality constraints only

inf [zc,zb]
1
2z′Hz + q′z + r

subj. to Gczc + Gbzb ≤W
zc ∈ Rsc , zb ∈ {0, 1}sb

z = [zc, zb], s = sc + sd

(4.33)

The general form can always be translated into the form with inequality
constraints only by standard and simple manipulations.

For a fixed integer value z̄b of zb, the MIQP (4.32) becomes a quadratic
program:

inf [zc]
1
2z′cHczc + q′cz + k

subj. to Gczc ≤W −Gbz̄b

Geq,czc = Weq −Geq,bz̄b

zc ∈ Rsc

(4.34)

Therefore the simplest way to interpret and solve an MIQP is to enumerate
all the 2sb integer values of the variable zb and solve the corresponding QPs.
By comparing the 2sb optimal costs one can derive the optimizer and the
optimal cost of the MIQP (4.32). Although this approach is not used in
practice, it gives a simple way for proving what is stated next. Let Pẑb

be the
feasible set (1.6) of problem (4.33) for a fixed zb = ẑb. The cost is a quadratic
function defined over Rsc and Pẑb

is a polyhedron defined by the inequality
constraints

Gczc ≤W −Gbẑb (4.35)

Denote by J∗ the optimal value and by Z∗ the set of optimizers of prob-
lem (4.28)

Z∗ = arg minzb∈{0,1}sb ,zc∈Pzb

1

2
z′cHczc + q′cz

If Pzb
is empty for all zb, then the problem (4.33) is infeasible. Five cases can

occur if Pzb
is not empty for at last one zb ∈ {0, 1}sb:

Case 1. The MIQP solution is unbounded, i.e., J∗ = −∞. This cannot
happen if H ≻ 0.
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Case 2. The MIQP solution is bounded, i.e., J∗ > −∞ and the optimizer
is unique. Z∗ is a singleton.

Case 3. The MIQP solution is bounded and there are infinitely many op-
tima corresponding to the same integer value. Z∗ is the Cartesian product
of an infinite dimensional subset of Rs and an integer number z∗b . This
cannot happen if H ≻ 0.

Case 4. The MIQP solution is bounded and there are finitely many optima
corresponding to different integer values. Z∗ is a finite set of optimizers
{(z∗1,c, z

∗
1,b), . . . , (z

∗
N,c, z

∗
N,b)}.

Case 5. The union of Case 3 and Case 4.
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In this chapter we introduce the concept of multiparametric programming
and we recall the main results of nonlinear multiparametric programming.
Then, in Chapter 6 we describe three algorithms for solving multiparametric
linear programs (mp-LP), multiparametric quadratic programs (mp-QP) and
multiparametric mixed-integer linear programs (mp-MILP).

Consider the mathematical program

J∗(x) = inf
z

J(z, x)

subj. to g(z, x) ≤ 0

where z is the optimization vector and x is a vector of parameters. We are
interested in studying the behavior of the value function J∗(x) and the opti-
mizer z∗(x) as we vary the parameter x.

The operations research community has addressed parameter variations in
mathematical programs at two levels: sensitivity analysis, which characterizes
the change of the solution with respect to small perturbations of the parame-
ters, and parametric programming, where the characterization of the solution
for a full range of parameter values is sought. More precisely, programs where
x is scalar are referred to as parametric programs, while programs where x is
a vector are referred to as multiparametric programs.

There are several reasons to look for efficient solvers of multiparametric
programs. Typically, mathematical programs are affected by uncertainties
due to factors that are either unknown or that will be decided later. Para-
metric programming systematically subdivides the space of parameters into
characteristic regions, which depict the feasibility and corresponding per-
formance as a function of the uncertain parameters, and hence provide the
decision maker with a complete map of various outcomes.

Our interest in multiparametric programming arises from the field of sys-
tem theory and optimal control. For discrete-time dynamical systems, finite
time constrained optimal control problems can be formulated as mathemati-
cal programs where the cost function and the constraints are functions of the
initial state of the dynamical system. In particular, Zadeh and Whalen [267]
appear to have been the first ones to express the optimal control problem for
constrained discrete-time linear systems as a linear program. We can inter-
pret the initial state as a parameter. By using multiparametric programming
we can characterize and compute the solution of the optimal control problem
explicitly as a function of the initial state.

We are further motivated by the model predictive control (MPC) technique.
MPC is very popular in the process industry for the automatic regulation of
process units under operating constraints, and has attracted a considerable
research effort in the last two decades. MPC requires an optimal control
problem to be solved on-line in order to compute the next command action.
This mathematical program depends on the current sensor measurements.
The computation effort can be moved off-line by solving multiparametric
programs, where the control inputs are the optimization variables and the
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measurements are the parameters. The solution of the parametric program
problem is a control law describing the control inputs as function of the
measurements. Model Predictive Control and its multiparametric solution
are discussed in Chapter 11.

In the following will present several examples that illustrate the paramet-
ric programming problem and hint at some of the issues that need to be
addressed by the solvers.

Example 5.1. Consider the parametric quadratic program

J∗(x) = min
z

J(z, x) = 1
2z2 + 2xz

subj. to z ≤ 1 + x,

where x ∈ R. Our goals are:

1. to find z∗(x) = arg minz J(z, x),
2. to find all x for which the problem has a solution, and
3. to compute the value function J∗(x).

The Lagrangian function is

L(z, x, u) =
1

2
z2 + 2xz + u(z − x− 1)

and the KKT conditions are (see Section 4.2.3 for KKT conditions for
quadratic programs)

z + 2x + u = 0 (5.1a)

u(z − x− 1) = 0 (5.1b)

u ≥ 0 (5.1c)

z − x− 1 ≤ 0 (5.1d)

Consider (5.1) and the two strictly complementary cases:

A.
z + 2x + u = 0
z − x− 1 = 0
u > 0

⇒





z∗ = x + 1
J∗ = 5

2x2 + 3x + 1
2

x < − 1
3

B.
z + 2x + u = 0
z − x− 1 ≤ 0
u = 0

⇒





z∗ = −2x
J∗ = −2x2

x ≥ − 1
3

(5.2)

This solution is depicted in Figure 5.1.

The above simple procedure, which required nothing but the solution of the
KKT conditions, yielded the optimizer z∗(x) and the value function J∗(x)
for all values of the parameter x. The set of admissible parameters values
was divided into two critical regions, defined by x < − 1

3 and x ≥ − 1
3 . In the
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 z*(x)

 J*(x)

Fig. 5.1 Example 5.1: Optimizer z∗(x) and value function J∗(x) as a function of
the parameter x.

region x < − 1
3 the inequality constraint is active and the Lagrange multiplier

is greater than zero, in the other region x ≥ − 1
3 the Lagrange multiplier is

equal to zero and the inequality constraint is not active (with the exception of
the boundary point − 1

3 ). In general when there are more than one inequality
constraints a critical region is defined by the set of inequalities that are
active in the region. Throughout a critical region the conditions for optimality
derived from the KKT conditions do not change. For our example, in each
critical region the optimizer z∗(x) is affine and the value function J∗(x)
is quadratic. Thus, considering all x, z∗(x) is piecewise affine and J∗(x) is
piecewise quadratic. Both z∗(x) and J∗(x) are continuous, but z∗(x) is not
continuously differentiable.

In much of this book we will be interested in two questions: how to find the
value function J∗(x) and the optimizer z∗(x) and what are their structural
properties, e.g., continuity, differentiability and convexity. Such questions
have been addressed for general nonlinear multiparametric programming by
several authors in the past (see [17] and references therein), by making use
of quite involved mathematical theory based on the continuity of point-to-set
maps. The concept of point-to-set maps will not be extensively used in this
book. However, it represents a key element for a rigorous mathematical de-
scription of the properties of a nonlinear multiparametric program and hence
a few key theoretical results for nonlinear multiparametric programs based
on the point-to-set map formalism will be recalled in this chapter.



5.1 General Results for Multiparametric Nonlinear Programs 71

5.1 General Results for Multiparametric Nonlinear

Programs

Consider the nonlinear mathematical program dependent on a parameter x
appearing in the cost function and in the constraints

J∗(x) = inf
z

J(z, x)

subj. to g(z, x) ≤ 0
(5.3)

where z ∈ Z ⊆ Rs is the optimization vector, x ∈ X ⊆ Rn is the parameter
vector, f : Rs × Rn → R is the cost function and g : Rs × Rn → Rng are the
constraints. We denote by gi(z, x) the i-th component of the vector-valued
function g(x, z).

A small perturbation of the parameter x in the mathematical program (5.3)
can cause a variety of results. Depending on the properties of the functions f
and g the solution z∗(x) may vary smoothly or change abruptly as a function
of x. We denote by R the point-to-set map which assigns to a parameter
x ∈ X the (possibly empty) set R(x) of feasible variables z ∈ Z, R : X 7→ 2Z

R(x) = {z ∈ Z : g(z, x) ≤ 0}, (5.4)

by K∗ the set of feasible parameters

K∗ = {x ∈ X : R(x) 6= ∅}, (5.5)

by J∗(x) the real-valued function that expresses the dependence of the min-
imum value of the objective function over K∗ on x

J∗(x) = inf
z
{J(z, x) : z ∈ R(x)}, (5.6)

and by Z∗(x) the point-to-set map which assigns the (possibly empty) set of
optimizers z∗ ∈ 2Z to a parameter x ∈ X

Z∗(x) = {z ∈ R(x) : J(z, x) ≤ J∗(x)}. (5.7)

J∗(x) will be referred to as optimal value function or simply value function,
Z∗(x) will be referred to as optimal set. If Z∗(x) is a singleton for all x, then
z∗(x) , Z∗(x) will be called optimizer function. We remark that R and Z∗

are set-valued functions. As discussed in the notation section, with abuse of
notation J∗(x) and Z∗(x) will denote both the functions and the value of the
functions at the point x. The context will make clear which is being discussed

The book by Bank and coauthors [17] and Chapter 2 of [100] describe
conditions under which the solution of the nonlinear multiparametric pro-
gram (5.3) is locally well behaved and establish properties of the optimal
value function and of the optimal set. The description of such conditions re-
quires the definition of continuity of point-to-set maps. Before introducing
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this concept we will show through two simple examples that continuity of
the constraints gi(z, x) with respect to z and x is not enough to imply any
regularity of the value function and the optimizer function.

Example 5.2 ( [17] page 12).
Consider the following problem:

J∗(x) = minz x2z2 − 2x(1− x)z
subj. to z ≥ 0

0 ≤ x ≤ 1
(5.8)

Cost and constraints are continuous and continuously differentiable. For
0 < x ≤ 1 the optimizer function is z∗ = (1 − x)/x and the value func-
tion is J∗(x) = −(1 − x)2. For x = 0, the value function is J∗(x) = 0 while
the optimal set is Z∗ = {z ∈ R : z ≥ 0}. Thus, the value function is dis-
continuous at 0 and the optimal set is single-valued for all 0 < x ≤ 1 and
set-valued for x = 0.

Example 5.3. Consider the following problem:

J∗(x) = inf
z

z

subj. to zx ≥ 0
−10 ≤ z ≤ 10
−10 ≤ x ≤ 10

(5.9)

where z ∈ R and x ∈ R. For each fixed x the set of feasible z is a segment. The
point-to-set map R(x) is plotted in Figure 5.2a. The function g1 : (z, x) 7→ zx
is continuous. Nevertheless, the value function J∗(x) = z∗(x) has a disconti-
nuity at the origin as can be seen in Figure 5.2b.

−10 −5 0 5 10
−10

−5

0

5

10

 x

 R(x)

(a) Point-to-set map R(x)

−10 −5 0 5 10
−10

−5

0

5

10

 x

 J*(x)

(b) Value function J∗(x)

Fig. 5.2 Example 5.3: Solution.
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Example 5.4. Consider the following problem:

J∗(x) = inf
z1,z2

−z1

subj. to g1(z1, z2) + x ≤ 0
g2(z1, z2) + x ≤ 0

(5.10)

where examples of the functions g1(z1, z2) and g2(z1, z2) are plotted in Fig-
ures 5.3(a)–5.3(c). Figures 5.3(a)–5.3(c) also depict the point-to-set map
R(x) = {[z1, z2] ∈ R2|g1(z1, z2) + x ≤ 0, g2(z1, z2) + x ≤ 0} for three fixed
x. Starting from x = x̄1, as x increases, the domain of feasibility in the
space z1, z2 shrinks; at the beginning it is connected (Figure 5.3(a)), then it
becomes disconnected (Figure 5.3(b)) and eventually connected again (Fig-
ure 5.3(c)). No matter how smooth one chooses the functions g1 and g2, the
value function J∗(x) = −z∗1(x) will have a discontinuity at x = x̄3.

Examples 5.2, 5.3, 5.4 show the case of simple and smooth constraints
which lead to discontinuous behavior of value function and optimal set. We
anticipate here the main causes:

• in example 5.2 the feasible vector space Z is unbounded (z ≥ 0),
• in examples 5.3 and 5.4 the feasible point-to-set map R(x) (defined in (5.4))

is discontinuous, as precisely defined below.

In the next sections we discuss both cases in detail.

Continuity of Point-to-Set Maps

Consider a point-to-set map R : x ∈ X 7→ R(x) ∈ 2Z . We give the following
definitions of open and closed map according to Hogan [140]:

Definition 5.1. The point-to-set map R(x) is open at a point x̄ ∈ K∗ if for
all sequences {xk} ⊂ K∗ with xk → x̄ and for all z̄ ∈ R(x̄) there exists an
integer m and a sequence {zk} ∈ Z such that zk ∈ R(xk) for k ≥ m and
zk → z̄

Definition 5.2. The point-to-set map R(x) is closed at a point x̄ ∈ K∗ if for
each pair of sequences {xk} ⊂ K∗, and zk ∈ R(xk) with the properties

xk → x̄, zk → z̄.

it follows that z̄ ∈ R(x̄).

We define the continuity of a point-to-set map according to Hogan [140] as
follows:
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z2

g1( 1 2, )=z z x1

z1

g2( 1 2, )=z z x1

(a) Set R(x̄1) shaded in gray.

z2

z1

g1 2( 1 2, )=z z x

g2 2( 1 2, )=z z x

(b) Set R(x̄2) shaded in gray.
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g1( 1 2, )=z z x3

g2( 1 2, )=z z x3

(c) Set R(x̄3) shaded in gray.

x

J x
*
( )

x1
x3

(d) Value function J∗(x)

Fig. 5.3 Example 5.4: problem (5.10). (a)-(c) Projections of the point-to-set map
R(x) for three values of the parameter x: x̄1 < x̄2 < x̄3; (d) Value function J∗(x).

Definition 5.3. The point-to-set map R(x) is continuous at a point x̄ in
K∗ if it is both open and closed at x̄. R(x) is continuous in K∗ if R(x) is
continuous at any point x in K∗.

The definitions above are illustrated through two examples.

Example 5.5. Consider

R(x) = {z ∈ R : z ∈ [0, 1] if x < 1, z ∈ [0, 0.5] if x ≥ 1}

The point-to-set map R(x) is plotted in Figure 5.4. It easy to see that R(x) is
not closed but open. In fact, if one considers a sequence {xk} that converges
to x̄ = 1 from the left and extracts the sequence {zk} plotted in Figure 5.4
converging to z̄ = 0.75, then z̄ /∈ R(x̄) since R(1) = [0, 0.5].
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1

1

z

x

{ }zk

{ }xk

Fig. 5.4 Example 5.5: Open and not closed point-to-set map R(x)

Example 5.6. Consider

R(x) = {z ∈ R : z ∈ [0, 1] if x ≤ 1, z ∈ [0, 0.5] if x > 1}

The point-to-set map R(x) is plotted in Figure 5.5. It easy to verify that
R(x) is closed but not open. Choose z̄ = 0.75 ∈ R(x̄). Then, for any sequence
{xk} that converges to x̄ = 1 from the right, one is not able to construct
a sequence {zk} ∈ Z such that zk ∈ R(xk) for and zk → z̄. In fact, such
sequence zk will always be bounded between 0 and 0.5.

1

1

z

x

{ }zk

{ }xk

Fig. 5.5 Example 5.6: Closed and not open point-to-set map R(x)

Remark 5.1. We remark that “upper semicontinuous” and “lower semicon-
tinuous” definitions of point-to-set map are sometimes preferred to open and
closed definitions [43, page 109]. In [17, page 25] nine different definitions for
the continuity of point-to-set maps are introduced and compared. We will
not give any details on this subject and refer the interested reader to [17,
page 25].
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The examples above are only illustrative. In general, it is difficult to test
if a set is closed or open by applying the definitions. Several authors have
proposed sufficient conditions on gi which imply the continuity of R(x). In
the following we introduce a theorem which summarizes the main results
of [227, 84, 140, 43, 17].

Theorem 5.1. If Z is convex, if each component gi(z, x) of g(z, x) is con-
tinuous on Z × x̄ and convex in z for each fixed x ∈ X and if there exists a
z̄ such that g(z̄, x̄) < 0, then R(x) is continuous at x̄.

The proof is given in [140, Theorems 10 and 12]. An equivalent proof can be
also derived from [17, Theorem 3.1.1 and Theorem 3.1.6]. 2

Remark 5.2. Note that convexity in z for each x is not enough to imply the
continuity of R(x) everywhere in K∗. In [17, Example 3.3.1 on page 53] an
example illustrating this is presented. We remark that in Example 5.3 the
origin does not satisfy the last hypothesis of Theorem 5.1.

Remark 5.3. If the assumptions of Theorem 7.1 hold at each x̄ ∈ X then
one can extract a continuous single-valued function (often called “continuous
selection”) r : X 7→ R such that r(x) ∈ R(x), ∀x ∈ X , provided that Z is
finite-dimensional. Note that convexity of R(x) is a critical assumption [17,
Corollary 2.3.1]. The following example shows a point-to-set map R(x) not
convex for a fixed x which is continuous but has no continuous selection [17,
pag. 29]. Let Λ be the unit disk in R2, define R(x) as

x ∈ Λ 7→ R(x) , {z ∈ Λ : ‖z − x‖2 ≥
1

2
} (5.11)

It can be shown that the point-to-set map R(x) in (5.11) is continuous accord-
ing to Definition 5.3. In fact, for a fixed x̄ ∈ Λ the set R(x̄) is the set of points
in the unit disk outside the disk centered in x̄ and of radius 0.5 (next called
the half disk); small perturbations of x̄ yield small translations of the half disk
inside the unit disk for all x̄ ∈ Λ. However R(x) has no continuous selection.
Assume that there exists a continuous selection r : x ∈ Λ 7→ r(x) ∈ Λ. Then,
there exists a point x∗ such that x∗ = r(x∗). Since r(x) ∈ R(x), ∀x ∈ Λ,
there exists a point x∗ such that x∗ ∈ R(x∗). This is not possible since for all
x∗ ∈ Λ, x∗ /∈ R(x∗) (recall that R(x∗) is set of points in the unit disk outside
the disk centered in x∗ and of radius 0.5).

Remark 5.4. Let Λ be the unit disk in R, define R(x) as

x ∈ Λ 7→ R(x) , {z ∈ Λ : |z − x| ≥ 1

2
}. (5.12)

R(x) is closed and not open and it has no continuous selection.

Remark 5.5. Based on [17, Theorem 3.2.1-(I) and Theorem 3.3.3], the hy-
potheses of Theorem 5.1 can be relaxed for affine gi(z, x). In fact, affine
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functions are weakly analytic functions according to [17, definition on page
47]. Therefore, we can state that if Z is convex, if each component gi(z, x) of
g(z, x) is an affine function, then R(x) is continuous at x̄ for all x̄ ∈ K∗.

Properties of Value Function and Optimal Set

Consider the following definition

Definition 5.4. A point-to-set map R(x) is said to be uniformly compact
near x̄ if there exist a neighborhood N of x̄ such that the closure of the set⋃

x∈N R(x) is compact.

Now we are ready to state the two main theorems on the continuity of the
value function and of the optimizer function.

Theorem 5.2. [140, Theorem 7] Consider problem (5.3)–(5.4). If R(x) is
a continuous point-to-set map at x̄ and uniformly compact near x̄ and if J is
continuous on x̄×R(x̄), then J∗ is continuous at x̄.

Theorem 5.3. [140, Corollary 8.1] Consider problem (5.3)–(5.4). If R(x)
is a continuous point-to-set map at x̄, J is continuous on x̄ × R(x̄), Z∗ is
nonempty and uniformly compact near x̄, and Z∗(x̄) is single valued, then
Z∗ is continuous at x̄.

Remark 5.6. Equivalent results of Theorems 5.2 and 5.3 can be found in [43,
page 116] and [17, Chapter 4.2].

Example 5.7 (Example 5.2 revisited). Consider Example 5.2. The feasible
map R(x) is unbounded and therefore it does not satisfy the assumptions
of Theorem 5.2 (since it is not uniformly compact). Modify Example 5.2 as
follows:

J∗(x) = minz x2z2 − 2x(1− x)z
subj. to 0 ≤ z ≤M

0 ≤ x ≤ 1
(5.13)

with M ≥ 0. The solution can be computed immediately. For 1/(1 + M) <
x ≤ 1 the optimizer function is z∗ = (1 − x)/x and the value function is
J∗(x) = −(1 − x)2. For 0 < x ≤ 1/(1 + M), the value function is J∗(x) =
x2M2 − 2x(1− x) ∗M and the optimizer function is z∗ = M . For x = 0, the
value function is J∗(x) = 0 while the optimal set is Z∗ = {z ∈ R : 0 ≤ z ≤
M}.

No matter how large we choose M , the value function and the optimal set
are continuous for all x ∈ [0, 1].

Example 5.8 (Example 5.3 revisited). Consider Example 5.3. The feasible
map R(x) is not continuous at x = 0 and therefore it does not satisfy the
assumptions of Theorem 5.2. Modify Example 5.3 as follows:
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J∗(x) = inf
z

z

subj. to zx ≥ −ε
−10 ≤ z ≤ 10
−10 ≤ x ≤ 10

(5.14)

where ε > 0. The value function and the optimal set are depicted in Figure 5.6
for ε = 1. No matter how small we choose ε, the value function and the
optimal set are continuous for all x ∈ [−10, 10]
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(a) Point-to-set map R(x)
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 J*(x)

(b) Value function J∗(x)

Fig. 5.6 Example 5.8: Solution.

The following corollaries consider special classes of parametric problems.

Corollary 5.1 (mp-LP). Consider the special case of the multiparametric
program (5.3). where the objective and the constraints are linear

J∗(x) = min
z

c′z

subj. to Gz ≤W + Sx,
(5.15)

and assume that there exists an x̄ and a finite z∗(x̄). Then, K∗ is a nonempty
polyhedron, J∗(x) is a continuous and convex function in K∗ and the optimal
set Z∗(x) is a continuous point-to-set map in K∗.

Proof: See Theorem 5.5.1 in [17] and the bottom of page 138 in [17]. 2

Corollary 5.2 (mp-QP). Consider the special case of the multiparametric
program (5.3). where the objective is quadratic and the constraints are linear

J∗(x) = min
z

1
2z′Hz + z′F

subj. to Gz ≤W + Sx,
(5.16)
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and assume that H ≻ 0 and that there exists (z̄, x̄) such that Gz̄ ≤ W +
Sx̄. Then, K∗ is a nonempty polyhedron, J∗(x) is a continuous and convex
function in K∗ and the optimizer function z∗(x) is continuous in K∗.

Proof: See Theorem 5.5.1 in [17] and the bottom of page 138 in [17]. 2

Remark 5.7. We remark that Corollary 5.1 requires the existence of a finite
optimum z∗(x̄). This is implicitly guaranteed in the mp-QP case since in
Corollary 5.2 the matrix H is assumed to be strictly positive definite. More-
over, the existence of a finite optimum z∗(x̄) guarantees that J∗(x) is finite
for all x in K∗. This has been proven in [106, page 178, Theorem 1] for the
mp-LP case and it is immediate to prove for the mp-QP case.

Remark 5.8. Both Corollary 5.1 (mp-LP) and Corollary 5.2 (mp-QP) could
be formulated stronger: J∗ and Z∗ are even Lipschitz-continuous. J∗ is also
piecewise affine (mp-LP) or piecewise quadratic (mp-QP), and for the mp-QP
z∗(x) is piecewise affine. For the linear case, Lipschitz continuity is known
from Walkup-Wets [259] as a consequence of Hoffman’s theorem. For the
quadratic case, Lipschitz continuity follows from Robinson [226], as e.g. shown
in Klatte-Thiere [162]. The “piecewise” properties are consequences of local
stability analysis of parametric optimization, e.g. [100, 17, 183] and are the
main focus of the next chapter.
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In this chapter we will concentrate on multiparametric linear programs
(mp-LP), multiparametric quadratic programs (mp-QP) and multiparametric
mixed-integer linear programs (mp-MILP).

The main idea of the multiparametric algorithms presented in this chapter
is to construct a critical region in a neighborhood of a given parameter, by us-
ing necessary and sufficient conditions for optimality, and then to recursively
explore the parameter space outside such a region. For this reason the meth-
ods are classified as “geometric”. All the algorithms are easy to implement
once standard solvers are available: linear programming, quadratic program-
ming and mixed-integer linear programming for solving mp-LP, mp-QP and
mp-MILP, respectively. A literature review is presented in Section 6.6.

6.1 Multiparametric Programs with Linear Constraints

6.1.1 Formulation

Consider the multiparametric program

J∗(x) = min
z

J(z, x)

subj. to Gz ≤W + Sx,
(6.1)

where z ∈ Rs are the optimization variables, x ∈ Rn is the vector of param-
eters, J(z, x) : Rs+n → R is the objective function and G ∈ Rm×s, W ∈ Rm,
and S ∈ Rm×n. Given a closed and bounded polyhedral set K ⊂ Rn of
parameters,

K , {x ∈ Rn : Tx ≤ N}, (6.2)

we denote by K∗ ⊆ K the region of parameters x ∈ K such that (6.1) is
feasible:

K∗ = {x ∈ K : ∃z satisfying Gz ≤W + Sx} (6.3)

In this book we assume that

1. constraint x ∈ K to be included into the constraints Gz ≤W + Sx,
2. the polytope K is full dimensional. Otherwise we can reformulate the

problem with a smaller set of parameters such that K becomes full di-
mensional.

3. S has full column rank. Otherwise we can again reformulate the problem
in a smaller set of parameters.

Proposition 6.1. Consider the multiparametric problem (6.1). If the domain
of J(z, x) is Rs+n then K∗ is a polytope.

Proof: K∗ is the projection of the set Gz − Sx ≤ W on the x space
intersected with the polytope K. 2
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For any given x̄ ∈ K∗, J∗(x̄) denotes the minimum value of the objective
function in problem (6.1) for x = x̄. The function J∗ : K∗ → R expresses
the dependence of the minimum value of the objective function on x, J∗(x)
is called value function. The set-valued function Z∗ : K∗ → 2R

s

, where 2R
s

is the set of subsets of Rs, describes for any fixed x ∈ K∗ the set Z∗(x) of
optimizers z∗(x) yielding J∗(x).

We aim to determine the feasible region K∗ ⊆ K of parameters, the expres-
sion of the value function J∗(x) and the expression of one of the optimizers
z∗(x) ∈ Z∗(x).

6.1.2 Definition of Critical Region

Consider the multiparametric program (6.1). Let I , {1, . . . , m} be the set
of constraint indices. For any A ⊆ I, let GA and SA be the submatrices of G
and S, respectively, comprising the rows indexed by A and denote with Gj ,
Sj and Wj the j-th row of G, S and W , respectively. We define CRA as the
set of parameters x for which the same set A of constraints is active at the
optimum. More formally we have the following definitions.

Definition 6.1. The optimal partition of I at x is the partition (A(x), NA(x))
where

A(x) , {j ∈ I : Gjz
∗(x) − Sjx = Wj for all z∗(x) ∈ Z∗(x)}

NA(x) , {j ∈ I : exists z∗(x) ∈ Z∗(x) satisfying Gjz
∗(x)− Sjx < Wj}.

It is clear that (A(x), NA(x)) are disjoint and their union is I.

Definition 6.2. Consider a set A ⊆ I. The critical region associated with
the set of active constraints A is defined as

CRA , {x ∈ K∗ : A(x) = A} (6.4)

The set CRA is the set of all parameters x such that the constraints indexed
by A are active at the optimum of problem (6.1). Our first objective is to
work with full dimensional critical regions. For this reason, next we discuss
the case when the dimension of the parameter space can be reduced.

6.1.3 Reducing the Dimension of the Parameter Space

It may happen that the set of inequality constraints in (6.1) contains some
“hidden” or “implicit” equality constraints as the following example shows.
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Example 6.1.
minz J(z, x)

subj. to





z1 + z2 ≤ 9− x1 − x2

z1 − z2 ≤ 1− x1 − x2

z1 + z2 ≤ 7 + x1 + x2

z1 − z2 ≤ −1 + x1 + x2

−z1 ≤ −4
−z2 ≤ −4

z1 ≤ 20− x2

(6.5)

where K = {[x1, x2]
′ ∈ R2 : −100 ≤ x1 ≤ 100, −100 ≤ x2 ≤ 100}. The

reader can check that all feasible values of x1, x2, z1, z2 satisfy

z1 + z2 = 9− x1 − x2

z1 − z2 = 1− x1 − x2

z1 + z2 = 7 + x1 + x2

z1 − z2 = −1 + x1 + x2

z1 = 4
z2 = 4
z1 ≤ 20− x2

(6.6)

where we have identified many of the inequalities to be hidden equalities.
This can be simplified to

x1 + x2 = 1
x2 ≤ 16

(6.7)

Thus

K∗ =



[x1, x2]

′ ∈ R2 :
x1 + x2 = 1

−100 ≤ x1 ≤ 100
−100 ≤ x2 ≤ 16.



 (6.8)

The example shows that the polyhedron K∗ is contained in a lower dimen-
sional subspace of K, namely a line segment in R2.

Our goal is to identify the hidden equality constraints (as in (6.6)) and use
them to reduce the dimension of the parameter space (as in (6.7)) for which
the multiparametric program needs to be solved.

Definition 6.3. A hidden equality of the polyhedron C = {ξ ∈ Rs : Bξ ≤ v}
is an inequality Biξ ≤ vi such that Biξ̄ = vi ∀ξ̄ ∈ C
To find hidden equalities we need to solve

v∗i , min Biξ
subj. to Bξ ≤ v

for all constraints i = 1, . . . , m. If v∗i = vi, then Biξ = vi is a hidden equality.
We can apply this procedure with ξ = [ x

z ] to identify the hidden equalities
in the set of inequalities in (6.1)
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Gz ≤W + Sx

to obtain

Gnhz ≤ Wnh + Snhx (6.9a)

Ghz = Wh + Shx (6.9b)

where we have partitioned G, W and S to reflect the hidden equalities. In
order to find the equality constraints involving only the parameter x that
allow us to reduce the dimension of x, we need to project the equalities (6.9b)
onto the parameter space. Let the singular value decomposition of Gh be

Gh = [U1 U2] Σ

[
V ′

1

V ′
2

]

where the columns of U2 are the singular vectors associated with the zero
singular values. Then the matrix U ′

2 defines the projection of (6.9b) onto the
parameter space, i.e.

U ′
2Ghz = 0 = U ′

2Wh + U ′
2Shx. (6.10)

We can use this set of equalities to replace the parameter x ∈ Rn with a
set of n′ = n − rank(U ′

1Sh) new parameters in (6.9a) which simplifies the
parametric program (6.1).

In the rest of this book we always assume that the multiparametric pro-
gram has been preprocessed using the ideas of this section so that the number
of independent parameters is reduced as much as possible and K∗ is full di-
mensional.

6.2 Multiparametric Linear Programming

6.2.1 Formulation

Consider the special case of the multiparametric program (6.1) where the
objective is linear

J∗(x) = min
z

c′z

subj. to Gz ≤W + Sx,
(6.11)

All the variables were defined in Section 6.1.1. Our goal is to find the value
function J∗(x) and an optimizer function z∗(x) for x ∈ K∗. Note that K∗

can be determined as discussed in Proposition 6.1. As suggested through
Example 5.1 our search for these functions proceeds by partitioning the set
of feasible parameters into critical regions. This is shown through a simple
example next.



86 6 Multiparametric Programming: a Geometric Approach

Example 6.2. Consider the parametric linear program

J∗(x) = min
z

z + 1

subj. to z ≥ 1 + x
z ≥ 0

where z ∈ R and x ∈ R. Our goals are:

1. to find z∗(x) = arg minz, z≥0, z≥1+x z + 1,
2. to find all x for which the problem has a solution, and
3. to compute the value function J∗(x).

The Lagrangian function is

L(z, x, u1, u2) = z + u1(−z + x + 1) + u2(−z)

and the KKT conditions are (see Section 4.1.3 for KKT conditions for linear
programs)

− u1 − u2 = −1 (6.12a)

u1(−z + x + 1) = 0 (6.12b)

u2(−z) = 0 (6.12c)

u1 ≥ 0 (6.12d)

u2 ≥ 0 (6.12e)

−z + x + 1 ≤ 0 (6.12f)

−z ≤ 0 (6.12g)

Consider (6.12) and the three complementary cases:

A.

u1 + u2 = 1
−z + x + 1 = 0
−z < 0
u1 > 0
u2 = 0

⇒





z∗ = 1 + x
u∗

1 = −1, u∗
2 = 0

J∗ = 2 + x
x > −1

B.

u1 + u2 = 1
−z + x + 1 < 0
−z = 0
u1 = 0
u2 > 0

⇒





z∗ = 0
u∗

1 = 0, u∗
2 = −1

J∗ = 1
x < −1

C.

u1 + u2 = 1
−z + x + 1 = 0
−z = 0
u1 ≥ 0
u2 ≥ 0

⇒





z∗ = 0
u∗

1 ≥ 0, u2 ≥ 0, u∗
1 + u∗

2 = 1
J∗ = 1
x = −1

(6.13)
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This solution is depicted in Figure 6.1.

−3 −2 −1 0 1 2 3

−2

0

2

4

 x

 z*(x)

 J*(x)

Fig. 6.1 Example 6.2: Optimizer z∗(x) and value function J∗(x) as a function of
the parameter x.

The above simple procedure, which required nothing but the solution of
the KKT conditions, yielded the optimizer z∗(x) and the value function J∗(x)
for all values of the parameter x. The set of admissible parameters values was
divided into three critical regions, defined by x < −1, x > −1 and x = −1. In
the region x < −1 the first inequality constraint is active (z = 1+x) and the
Lagrange multiplier u1 is greater than zero, in the second region x > −1 the
second inequality constraint is active (z = 0) and the Lagrange multiplier u2

is greater than zero. In the third region x = −1 both constraints are active
and the Lagrange multipliers belong to the set u∗

1 ≥ 0, u2 ≥ 0, u∗
1 + u∗

2 = 1.
Throughout a critical region the conditions for optimality derived from the
KKT conditions do not change. For our example, in each critical region the
optimizer z∗(x) is affine and the value function J∗(x) is also affine.

6.2.2 Critical Regions, Value Function and Optimizer: Local
Properties

Consider the Definition 6.2 of critical region. In this section we show that
critical regions of mp-LP are polyhedra. We use primal feasibility to derive
the H-polyhedral representation of the critical regions, the complementary
slackness conditions to compute an optimizer z∗(x), and the dual problem of
(6.11) to derive the optimal value function J∗(x) inside each critical region.

Consider the dual problem of (6.11):
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min
u

(W + Sx)′u

subj. to G′u = −c
u ≥ 0.

(6.14)

The dual feasibility (DF), the complementary slackness (CS) and the primal
feasibility (PF), conditions for problems (6.11), (6.14) are

DF: G′u = −c, u ≥ 0 (6.15a)

CS: (Gjz −Wj − Sjx)uj = 0, ∀j ∈ I (6.15b)

PF: Gz ≤W + Sx (6.15c)

Let us assume that we have determined the optimal partition (A, NA) ,
(A(x∗), NA(x∗)) for some x∗ ∈ K∗. Let us calculate the critical region CRA.
The PF condition (6.15c) can be rewritten as

GAz∗(x)− SAx = WA (6.16a)

GNAz∗(x) − SNAx < WNA. (6.16b)

for all x ∈ CRA. Let l , rankGA and consider the QR decomposition of GA

GA = Q

[
U1 U2

0|A|−l×l 0|A|−l×|A|−l

]

where Q ∈ R|A|×|A| is a unitary matrix, U1 ∈ Rl×l is a full-rank square matrix

and U2 ∈ Rl×|A|−l. Let

[
P
D

]
, −Q−1SA and

[
q
r

]
, Q−1WA. From (6.16a)

we obtain [
U1 U2 P

0|A|−l×l 0|A|−l×|A|−l D

]


z∗1(x)
z∗2(x)

x


 =

[
q
r

]
. (6.17)

We partition (6.16b) accordingly

[
E F

] [z∗1(x)
z∗2(x)

]
− SNAx < WNA (6.18)

Calculating z∗1(x) from (6.17) we obtain

z∗1(x) = U−1
1 (−U2z

∗
2(x) − Px + q), (6.19)

which substituted in (6.18) gives:

(F − EU−1
1 U2)z

∗
2(x) + (SNA − EU−1

1 P )x < WNA − EU−1
1 q. (6.20)

The critical region CRA can be equivalently written as:
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CRA =

{
x ∈ Px : ∃z2 such that

[
z2

x

]
∈ Pz2x

}
, (6.21)

where:

Px := {x : Dx = r} , (6.22)

Pz2x :=

{[
z2

x

]
: (F − EU−1

1 U2)z
∗
2(x) + (SNA − EU−1

1 P )x < WNA − EU−1
1 q

}
(6.23)

In other words:
CRA = Px ∩ projx(Pz2x). (6.24)

We can now state some fundamental properties of critical regions, value
function and optimizer inside a critical region.

Theorem 6.1. Let (A, NA) , (A(x∗), NA(x∗)) for some x∗ ∈ K∗

i) CRA is an open polyhedron of dimension d where d = n− rank
[
GA SA

]
+

rankGA. If d = 0 then CRA = {x∗}.
ii) If rankGA = s (recall that z ∈ Rs) then the optimizer z∗(x) is unique and

given by an affine function of the state inside CRA, i.e., z∗(x) = Fix+Gi

for all x ∈ CRA.
iii)If the optimizer is not unique in CRA then Z∗(x) is an open polyhedron

for all x ∈ CRA.
iv)J∗(x) is an affine function of the state, i.e., J∗(x) = cix + di for all

x ∈ CRA.

Proof of (i)
Polytope Pz2x (6.23) is open and nonempty, therefore it is full-dimensional
in the (z2, x) space and dimprojx(Pz2x) = n. Also,

dimPx = n− rankD = n− (rank
[
GA SA

]
− rankGA)

Since the intersection of Px and projx(Pz2x) is nonempty (it contains at least
the point x∗) we can conclude that

dimCRA = n− rank
[
GA SA

]
+ rankGA.

Since we assumed that the set K in (6.2) is bounded, then CRA is bounded.
This implies that CRA is an open polytope since it is the intersection of an
open polytope and the subspace Dx = r. In general, if we allow K in (6.2)
to be unbounded, then the critical region CRA can be unbounded.

Proof of (ii)
Consider (6.19) and recall that l , rankGA. If l = s, then the primal opti-
mizer is unique U2 is an empty matrix and

z∗(x) = z∗1(x) = U−1
1 (−Px + q). (6.25)
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Proof of (iii)
If the primal optimizer is not unique in CRA then Z∗(x) in CRA is the follow-
ing point-to-set map: Z∗(x) = {[z1, z2] : z2 ∈ Pz2x, U1z1 +U2z2 +Px = q)}.
For a fixed x̄ ∈ CRA, Z∗(x̄) is an open polyhedron in the z = [z1, z2] space.
Moreover the set Z∗ = {[z1, z2, x] : [z2, x] ∈ Pz2x, U1z1 + U2z2 + Px = q}
is an open polyhedron in the [z, x] space.

Proof of (iv)
Consider the dual problem (6.14) and one of its optimizer u∗

0 for x = x∗.
By definition of a critical region u∗

0 remains optimal for all x ∈ CRA(x∗).
Therefore the value function in CRA(x∗) is

J∗(x) = (W + Sx)′u∗
0 (6.26)

which is an affine function of x on CRA. 2

Remark 6.1. If the optimizer is unique then the computation of CRA in (6.24)
does not require the projection of the set Pz2x in (6.23). In fact, U2 and F
are empty matrices and

CRA = Pz2x =
{
x : Dx = r, (SNA − EU−1P )x < WNA − EU−1q

}
.

(6.27)

Remark 6.2. Consider (6.17). If the LP is not primal degenerate for all x ∈
CRA then rankGA = rank

[
GA SA

]
= s and therefore D and r are empty. If

the LP is primal degenerate in CRA then we distinguish two cases:
Case 1. Matrix D is the null matrix and r is the null vector. Then we have
a full-dimensional primal degenerate critical region CRA(x0).
Case 2. The rank of D is p > 0. Then, CRA(x0) has dimension n− p < n =
dim(K∗). By Theorem 6.1 and the assumption that K∗ is full dimensional,
we conclude that CRA(x0) is an (n − p)-dimensional face of another critical
region CRA′ for some combination A′ ⊃ A(x0).

Note that Case 2 occurs only if the parameter vector x∗ in Theorem 6.1
lies on the face of two or more neighboring full-dimensional critical regions,
while Case 1 occurs when a full-dimensional set of parameters makes the LP
problem (6.11) primal degenerate.

6.2.3 Nonunique Optimizer∗

If Z∗(x) is not a singleton, then the projection of the set Pz2x in (6.23) is
required in order to compute the critical region CRA(x∗) (see Section 6.1.1
for a discussion of polyhedra projection). Moreover, if one needs to deter-
mine one possible optimizer z∗(·) in the dual degenerate region CRA(x∗) the
following simple method can be used. Choose a particular optimizer which
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Fig. 6.2 Example 6.3: Polyhedral partition of the parameter space corresponding to
the solution.

lies on a vertex of the feasible set, i.e., determine set Â(x∗) ⊃ A(x∗) of ac-

tive constraints for which rank(GÂ(x∗)) = s, and compute a subset ĈRÂ(x∗)

of the dual degenerate critical region (namely, the subset of parameters x

such that only the constraints Â(x∗) are active at the optimizer, which is

not a critical region in the sense of Definition 6.1). Within ĈRÂ(x∗), the

piecewise linear expression of an optimizers z∗(x) is available from (6.25).

The algorithm proceeds by exploring the space surrounding ĈRÂ(x∗) until

CRA(x∗) is covered. The arbitrariness in choosing an optimizer leads to dif-
ferent ways of partitioning CR{A(x∗)}, where the partitions, in general, may
overlap. Nevertheless, in each region a unique optimizer is defined. The stor-
ing of overlapping regions can be avoided by intersecting each new region
(inside the dual degenerate region) with the current partition computed so
far. This procedure is illustrated in the following example.

Example 6.3. Consider the following mp-LP reported in [106, page 152]

min −2z1 − z2

subj. to





z1 + 3z2 ≤ 9− 2x1 + x2

2z1 + z2 ≤ 8 + x1 − 2x2

z1 ≤ 4 + x1 + x2

−z1 ≤ 0
−z2 ≤ 0

(6.28)

where K is given by:
−10 ≤ x1 ≤ 10
−10 ≤ x2 ≤ 10.

(6.29)

The solution is represented in Figure 6.2 and the critical regions are listed in
Table 6.1.

The critical region CR{2} is related to a dual degenerate solution with
non-unique optimizers. The analytical expression of CR{2} is obtained by
projecting the H-polyhedron
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Region Optimizer Value Function
CR{2} not single valued −x1 + 2x1 − 8
CR{1,5} z∗

1 = −2x1 + x2 + 9, z∗
2 = 0 4x1 − 2x2 − 18

CR{1,3} z∗
1 = x1 + x2 + 4, z∗

2 = −x1 + 5/3 −x1 − 2x2 − 29/3

Table 6.1 Example 6.3: Critical regions and corresponding optimal value.

z1 + 3z2 + 2x1 − x2 < 9
2z1 + z2 − x1 + 2x2 = 8
z1 − x1 − x2 < 4
−z1 < 0
−z2 < 0

(6.30)

on the parameter space to obtain:

CR{2} =





[x1, x2] :

2.5x1 − 2x2 ≤ 5
−0.5x1 + x2 ≤ 4
−12x2 ≤ 5
−x1 − x2 ≤ 4





(6.31)

For all x ∈ CR{2}, only one constraint is active at the optimum, which makes
the optimizer not unique.

Figures 6.3 and 6.4 show two possible ways of covering CR{2}. The gener-
ation of overlapping regions is avoided by intersecting each new region with
the current partition computed so far, as shown in Figure 6.5 where C̃R{2,4},

C̃R{2,1} represents the intersected critical region. In Figure 6.3, the regions
are overlapping, and in Figure 6.5 artificial cuts are introduced at the bound-
aries inside the degenerate critical region CR{2}. On the contrary, no artificial
cuts are introduced in Figure 6.4.

6.2.4 Propagation of the Set of Active Constraints

The objective of this section is to briefly describe the propagation of the set
of active constraints when moving from one full-dimensional critical region to
a neighboring full-dimensional critical region. We will use a simple example
in order to illustrate the main points.

Example 6.4. Consider the mp-LP problem
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Fig. 6.3 Example 6.3: A possible sub-partitioning of the degenerate region CR2

where the regions ĈR{2,5} and ĈR{2,4} and ĈR{2,1} are overlapping. Note that
below each picture the feasible set and the level set of the value function in the
z-space is depicted for a particular choice of the parameter x indicated by a point
marked with ×.

min z1 + z2 + z3 + z4

subj. to





−z1 + z5 ≤ 0
−z1 − z5 ≤ 0
−z2 + z6 ≤ 0
−z2 − z6 ≤ 0

−z3 ≤ x1 + x2

−z3 − z5 ≤ x2

−z3 ≤ −x1 − x2

−z3 + z5 ≤ −x2

−z4 − z5 ≤ x1 + 2x2

−z4 − z5 − z6 ≤ x2

−z4 + z5 ≤ −1x1 − 2x2

−z4 + z5 + z6 ≤ −x2

z5 ≤ 1
−z5 ≤ 1

z6 ≤ 1
−z ≤ 1

(6.32)
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Fig. 6.4 A possible solution to Example 6.3 where the regions ĈR{2,5} and ĈR{2,3}

are non-overlapping
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Fig. 6.5 A possible solution for Example 6.3 where C̃R{2,4} is obtained by intersect-

ing ĈR{2,4} with the complement of ĈR{2,5}, and C̃R{2,1} by intersecting ĈR{2,1}

with the complement of ĈR{2,5} and ĈR{2,4}

where K is given by
−2.5 ≤ x1 ≤ 2.5
−2.5 ≤ x2 ≤ 2.5.

(6.33)

A solution to the mp-LP problem is shown in Figure 6.6 and the con-
straints which are active in each associated critical region are reported in
Table 6.2. Clearly, as z ∈ R6, CR6 = CR{1,3,6,7,9,10,11,12} and CR11 =
CR{2,4,5,8,9,10,11,12} are primal degenerate full-dimensional critical regions.

By observing Figure 6.6 and Table 6.2 we can notice the following. Under
no primal and dual degeneracy, (i) full critical regions are described by a set of
active constraint of dimension n, (ii) two neighboring full dimensional critical
regions CRAi and CRAj have Ai and Aj differing only in one constraint, (iii)
CRAi and CRAj will share a facet which is a primal degenerate critical region
CRAp of dimension n−1 with Ap = Ai∪Aj . In Example 6.4, CR1 ad CR13 are
two full dimensional and neighboring critical regions and the corresponding
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Critical Region Value function
CR1=CR{2,3,4,7,10,11} 2x1+3x2

CR2=CR{1,3,4,5,9,13} -2x1-3x2

CR3=CR{1,3,4,6,9,13} -x1-3x2-1
CR4=CR{1,3,6,9,10,13} -2x2-1
CR5=CR{1,2,3,7,10,11} x1

CR6=CR{1,3,6,7,9,10,11,12} x1

CR7=CR{1,3,7,10,11,15} x1

CR8=CR{1,3,4,5,9,12} -2x1-3x2

CR9=CR{2,4,8,11,12,14} 2x2-1
CR10=CR{1,2,4,5,9,12} -x1

CR11=CR{2,4,5,8,9,10,11,12} -x1

CR12=CR{2,4,5,9,12,16} -x1

CR13=CR{2,3,4,7,11,14} 2x1+3x2

CR14=CR{2,3,4,8,11,14} x1+3x2-1

Table 6.2 Example 6.4: Critical regions and corresponding value function.
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Fig. 6.6 Polyhedral partition of the parameter space corresponding to the solution
of Example 6.4

active set differs only in one constraint (constraint 10 in CR1 and constraint
14 in CR13). They share a facet CR15 which is a one dimensional critical
region (an open line), CR15=CR{2,3,4,8,10,11,14}. We remark that the solution
depicted in Figure 6.6 and detailed in Table 6.2 contains only full dimensional
critical regions.

If primal and/or dual degeneracy occur, then things become more com-
plex. In particular in the case of primal degeneracy, it might happen that full
dimensional critical regions are described by more than s active constraints
(CR6 or CR11 in Example 6.4). In case of dual degeneracy, it might hap-
pen that full dimensional critical regions are described by less than s active
constraints (CR{2} in Example 6.3).
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6.2.5 Value Function and Optimizer: Global Properties

In this section we discuss global properties of value function J∗(x), optimizer
z∗(x), and of the set K∗.

Theorem 6.2. Assume that for a fixed x0 ∈ K there exists a finite optimal
solution z∗(x0) of (6.11). Then, for all x ∈ K, (6.11) has either a finite
optimum or no feasible solution.

Proof: Consider the mp-LP (6.11) and assume by contradiction that
there exist x0 ∈ K and x̄ ∈ K with a finite optimal solution z∗(x0) and an
unbounded solution z∗(x̄). Then, the dual problem (6.14) for x = x̄ is infea-
sible. This implies that the dual problem will be infeasible for all real vectors
x since x enters only in the cost function. This contradicts the hypothesis
since the dual problem (6.14) for x = x0 has a finite optimal solution. 2

Theorem 6.3. The set of all parameters x such that the LP (6.11) has a
finite optimal solution z∗(x) equals K∗.

Proof: It follows directly from from Proposition 6.1 and Theorem 6.2.2
Note that from Definition 6.3 K∗ is the set of feasible paraments. However

the LP (6.11) might be unbounded from some x ∈ K∗. Theorem 6.3 excludes
this case.

The following Theorem 6.4 summarizes the properties enjoyed by the mul-
tiparametric solution.

Theorem 6.4. The function J∗(·) is convex and piecewise affine over K∗.
If the optimizer z∗(x) is unique for all x ∈ K∗, then the optimizer function
z∗ : K∗ → Rs is continuous and piecewise affine. Otherwise it is always
possible to define a continuous and piecewise affine optimizer function z∗

such that z∗(x) ∈ Z∗(x) for all x ∈ K∗.

Remark 6.3. In Theorem 6.4, the piecewise affine property of optimizer and
value function follows immediately from Theorem 6.1 and from the enumera-
tion of all possible combinations of active constraints sets. Convexity of J∗(·)
and continuity of Z∗(x) follows from standard results on multiparametric
programs (see Theorem 5.2 and Corollary 5.1). In the presence of multiple
optima, the proof of existence of a continuous and piecewise affine optimizer
function z∗ such that z∗(x) ∈ Z∗(x) for all z ∈ K∗ is more involved and we
refer the reader to [106, p. 180].

6.2.6 mp-LP Algorithm

The goal of an mp-LP algorithm is to determine the partition of K∗ into
critical regions CRAi , and to find the expression of the functions J∗(·) and
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Fig. 6.7 Generic mp-LP algorithm

z∗(·) for each critical region. Figure 6.7 sketches the two main components
of a generic mp-LP algorithm. The active set generator computes the set of
active constraints Ai. The KKT solver computes CRAi and the expression of
J∗(·) and z∗(·) in CRAi as explained in Theorem 6.1. The active set genera-
tor is the critical part. In principle, one could simply generate all the possible
combinations of active sets. However, in many problems only a few active
constraints sets generate full-dimensional critical regions inside the region of
interest K. Therefore, the goal is to design an active set generator algorithm
which computes only the active sets Ai with associated full-dimensional crit-
ical regions covering only K∗. This avoids the combinatorial explosion of a
complete enumeration. Next we will describe one possible implementation of
a mp-LP algorithm.

In order to start solving the mp-LP problem, we need an initial vector x0

inside the polyhedral set K∗ of feasible parameters. A possible choice for x0 is
the Chebychev center (see Section 3.4.5) of K∗, i.e., x0 solving the following
LP:

maxx,z,ǫ ǫ
subj. to Tix + ǫ‖Ti‖2 ≤ Ni, i = 1, . . . , nT

Gz − Sx ≤W
(6.34)

where nT is the number of rows Ti of the matrix T defining the set K in (6.2).
If ǫ ≤ 0, then the LP problem (6.11) is infeasible for all x in the interior
of K. Otherwise, we solve the primal and dual problems (6.11), (6.14) for
x = x0. Let z∗0 and u∗

0 be the optimizers of the primal and the dual problem,
respectively. The value z∗0 defines the following optimal partition

A(x0) , {j ∈ I : Gjz
∗
0 − Sjx0 −Wj = 0}

NA(x0) , {j ∈ I : Gjz
∗
0 − Sjx0 −Wj < 0} (6.35)

and consequently the critical region CRA(x0). Once the critical region CRA(x0)

has been defined, the rest of the space Rrest = K\CRA(x0) has to be explored
and new critical regions generated. An approach for generating a polyhe-
dral partition {R1, . . . , Rnrest} of the rest of the space Rrest is described in
Theorem 3.1 in Section 3.4.7. The procedure proposed in Theorem 3.1 for
partitioning the set of parameters allows one to recursively explore the pa-
rameter space. Such an iterative procedure terminates after a finite time, as
the number of possible combinations of active constraints decreases with each
iteration. Two following issues need to be considered:
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Fig. 6.8 Example of a critical region explored twice

1. The partitioning in Theorem 3.1 defines new polyhedral regions Rk to
be explored that are not related to the critical regions which still need
to be determined. This may split some of the critical regions, due to the
artificial cuts induced by Theorem 3.1. Post-processing can be used to join
cut critical regions [39]. As an example, in Figure 6.8 the critical region
CR{3,7} is discovered twice, one part during the exploration of R1 and
the second part during the exploration of R2. Although algorithms exist
for convexity recognition and computation of the union of polyhedra, the
post-processing operation is computationally expensive. Therefore, it is
more efficient not to intersect the critical region obtained by (6.27) with
halfspaces generated by Theorem 3.1, which is only used to drive the
exploration of the parameter space. Then, no post processing is needed
to join subpartitioned critical regions. On the other hand, some critical
regions may appear more than once. Duplicates can be uniquely identified
by the set of active constraints A(x) and can be easily eliminated. To
this aim, in the implementation of the algorithm we keep a list of all
the critical regions which have already been generated in order to avoid
duplicates. In Figure 6.8 the critical region CR{3,7} is discovered twice
but stored only once.

2. If case 2 occurs in Remark 6.2 to avoid further recursion of the algorithm
not producing any full-dimensional critical region, and therefore lengthen
the number of steps required to determine the solution to the mp-LP, we
perturb the parameter x0 by a random vector ǫ ∈ Rn, where

‖ǫ‖2 < mini{ |Tix0−Ni|√
TiTi

′ }, (6.36)

‖ · ‖2 denotes the standard Eucledian norm and Rk = {x : Tx ≤ N}
is the polyhedral region where we are looking for a new critical region.
Equation (6.36) ensures that the perturbed vector x0 = x0 + ε is still
contained in Rk.
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Based on the above discussion, the mp-LP solver can be summarized in
the following recursive Algorithm 6.2.1. Note that the algorithm generates
a partition of the state space which is not strict. The algorithm could be
modified to store the critical regions as defined in (6.4) which are open sets,
instead of storing their closure. In this case the algorithm has to explore and
store all the critical regions that are not full-dimensional in order to generate
a strict polyhedral partition of the set of feasible parameters. From a practical
point of view such procedure is not necessary since the value function and
the optimizer are continuous functions of x.

Algorithm 6.2.1

Input: Matrices c, G, W , S of the mp-LP (6.11) and set K in (6.2)

Output: Multiparametric solution to the mp-LP (6.11)

1 execute partition(K);

2 end.

procedure partition(Y )

3 let x0 ∈ Y and ǫ the solution to the LP (6.34);

4 if ǫ ≤ 0 then exit; (no full dimensional CR is in Y )

5 solve the LP (6.11), (6.14) for x = x0;

6 if the optimizer is not unique, then choose z∗0 with

rank(A(x0)) = s, where A(x0) is the set of active constraints defined

in (6.35) endif

7 let A(x0) be the set of active constraints as in (6.35);

8 let U1, U2, P, D matrices as in (6.17). Note that U2 is empty

from step 6

9 determine z∗(x) from (6.25) and CRA(x0) from (6.27);

10 choose z∗0 as one of the possible optimizers;

11 let J∗(x) as in (6.26) for x = x0;

12 Define and partition the rest of the region as in Theorem 3.1;

13 For each new sub-region Ri, partition(Ri); end procedure.

Remark 6.4. As remarked in Section 6.2.2, if rank(D) > 0 in step 8, the region
CRA(x0) is not full-dimensional. To avoid further recursion in the algorithm
which does not produce any full-dimensional critical region, after computing
U, P, D if D 6= 0 one should compute a random vector ǫ ∈ Rn satisfying (6.36)
and such that the LP (6.11) is feasible for x0 + ǫ and then repeat step 7 with
x0 ← x0 + ǫ.

Remark 6.5. Note that step 6 can be easily executed by using an active set
method for solving the LP (6.11) for x = x0. Note also that primal basic
solutions are needed only to define optimizers in a dual degenerate critical



100 6 Multiparametric Programming: a Geometric Approach

region. As remarked in the previous section, if one is only interested in char-
acterizing the dual degenerate critical region, without characterizing one of
the possible optimizer function x∗(·), step 6 can be avoided and instead of
executing steps 8-9 one can compute CRA(x0) by projecting (6.24) on K (note
that A(x0) has to be the set of active constraints as defined in (6.1)).

Remark 6.6. The algorithm determines the partition of K recursively. After
the first critical region is found, the rest of the region in K is partitioned into
polyhedral sets {Ri} as in Theorem 3.1. By using the same method, each set
Ri is further partitioned, and so on.



6.3 Multiparametric Quadratic Programming 101

6.3 Multiparametric Quadratic Programming

6.3.1 Formulation

In this section we investigate multiparametric quadratic programs (mp-QP),
a special case of the multiparametric program (6.1) where the objective is a
quadratic function

J∗(x) = min
z

J(z, x) = 1
2z′Hz

subj. to Gz ≤W + Sx,
(6.37)

All the variables were defined in Section 6.1.1. We assume H ≻ 0. Our goal
is to find the value function J∗(x) and the optimizer function z∗(x) in K∗.
Note that K∗ can be determined as discussed in Proposition 6.1. As suggested
through Example 5.1 our search for these functions proceeds by partitioning
the set of feasible parameters into critical regions. Note that the more general
problem with J(z, x) = z′Hz + x′Fz can always be transformed in the mp-
QP (6.37) by using the variable substitution z̃ , z + H−1F ′x.

As in the previous sections, we denote with the subscript j the j-th row
of a matrix or j-th element of a vector. Also, J , {1, . . . , m} is the set of
constraint indices and for any A ⊆ J , GA, WA and SA are the submatrices of
G, W and S, respectively, consisting of the rows indexed by A. Without loss
of generality we will assume that K∗ is full dimensional (if it is not, then the
procedure described in Section 6.1.3 can be used to obtain a full dimensional
K∗ in a reduced parameter space).

Next we reconsider the simple Example 5.1 of Chapter 5.

Example 6.5. Consider the parametric quadratic program

J∗(x) = min
z

J(z, x) = 1
2z2 + 2xz

subj. to z ≤ 1 + x,

where z ∈ R and x ∈ R. Our goals are:

1. to find z∗(x) = arg minz, z≤1+x J(z, x),
2. to find all x for which the problem has a solution, and
3. to compute the value function J∗(x).

The Lagrangian function is

L(z, x, u) =
1

2
z2 + 2xz + u(z − x− 1)

and the KKT conditions are (see Section 4.2.3 for KKT conditions for
quadratic programs)
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z + 2x + u = 0 (6.38a)

u(z − x− 1) = 0 (6.38b)

u ≥ 0 (6.38c)

z − x− 1 ≤ 0 (6.38d)

Consider (6.38) and the two strictly complementary cases:

A.
z + 2x + u = 0
z − x− 1 = 0
u > 0

⇒





z∗ = x + 1
u∗ = −3x− 1
J∗ = 5

2x2 + 3x + 1
2

x < − 1
3

B.
z + 2x + u = 0
z − x− 1 ≤ 0
u = 0

⇒





z∗ = −2x
u∗ = 0
J∗ = −2x2

x ≥ − 1
3

(6.39)

This solution is depicted in Figure 5.1 of Chapter 5. The above simple proce-
dure, which required nothing but the solution of the KKT conditions, yielded
the optimizer z∗(x) and the value function J∗(x) for all values of the param-
eter x. The set of admissible parameters values was divided into two critical
regions, defined by x < − 1

3 and x ≥ − 1
3 . In the region x < − 1

3 the inequal-
ity constraint is active and the Lagrange multiplier is greater than zero, in
the other region x ≥ − 1

3 the Lagrange multiplier is equal to zero and the
inequality constraint is not active (with the exception of the boundary point
− 1

3 ). Note that for x = − 1
3 the inequality constraint z − x− 1 ≤ 0 is active

at z∗ and the Lagrange multiplier is equal to zero. In this case the constraint
is called weakly active at z∗.

Throughout a critical region the conditions for optimality derived from the
KKT conditions do not change. In each critical region the optimizer z∗(x) is
affine and the value function J∗(x) is quadratic. Both z∗(x) and J∗(x) are
continuous.

6.3.2 Critical Regions, Value Function and Optimizer: Local
Properties

Consider the definition of critical region given in Section 6.1.2. In this section
we show that critical regions of mp-QP are polyhedra. We use the KKT con-
ditions (Section 2.4) to derive the H-polyhedral representation of the critical
regions and to compute the optimizer function z∗(x) and the optimal value
function J∗(x) inside each critical region.

The following theorem introduces fundamental properties of critical re-
gions and value function and optimizer inside a critical region.
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Theorem 6.5. Let (A, NA) , (A(x̄), NA(x̄)) for some x̄ ∈ K∗, Then

i) the closure of CRA is a polyhedron.
ii) z∗(x) is an affine function of the state inside CRA, i.e., z∗(x) = Fix+ Gi

for all x ∈ CRA.
iii)J∗(x) is a quadratic function of the state inside CRA, i.e., J∗(x) =

x′Mix + cix + di for all x ∈ CRA

Proof: The first-order Karush-Kuhn-Tucker (KKT) optimality condi-
tions (see Section 4.2.3) for the mp-QP are given by

Hz∗ + G′u∗ = 0, u ∈ Rm, (6.40a)

u∗
i (Giz

∗ −Wi − Six) = 0, i = 1, . . . , m, (6.40b)

u∗ ≥ 0, (6.40c)

Gz∗ ≤W + Sx, (6.40d)

We solve (6.40a) for z∗

z∗ = −H−1G′u∗ (6.41)

and substitute the result into (6.40b) to obtain the complementary slackness
condition

u∗(−GH−1G′u∗ −W − Sx) = 0. (6.42)

Let u∗
NA and u∗

A denote the Lagrange multipliers corresponding to inactive
and active constraints, respectively. For inactive constraints u∗

NA = 0. For
active constraints:

(−GAH−1GA
′)u∗

A −WA − SAx = 0, (6.43)

We distinguish two cases.
Case 1: The rows of GA are linearly independent. This implies that (GAH−1GA

′)
is a square full rank matrix and therefore

u∗
A = −(GAH−1GA

′)−1(WA + SAx) (6.44)

where GA, WA, SA correspond to the set of active constraints A. Thus u∗ is
an affine function of x. We can substitute u∗

A from (6.44) into (6.41) to obtain

z∗ = H−1GA
′(GAH−1GA

′)−1(WA + SAx) (6.45)

and note that z∗ is also an affine function of x. J∗(x) = 1
2z∗(x)′Hz∗(x) and

therefore is a quadratic function of x. The critical region CRA is computed
by substituting z∗ from (6.41) in the primal feasibility conditions (6.40d)

Pp , {x : GH−1GA
′(GAH−1GA

′)−1(WA + SAx) < W + Sx} (6.46)

and the Lagrange multipliers in (6.44) in the dual feasibility conditions (6.40c)
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Pd , {x : −(GAH−1GA
′)−1(WA + SAx) ≥ 0} (6.47)

In conclusion, the critical region CRA is the intersection of Pp and Pd:

CRA = {x : x ∈ Pp, x ∈ Pd} (6.48)

Obviously, the closure of CRA is a polyhedron in the x-space.
The polyhedron Pp is open and non empty (it contains at least the

point x̄). Therefore it is full-dimensional in the x space. This implies that
dimCRA = dimPd.

Case 2: The rows of GA are not linearly independent. For instance, this
happens when more than s constraints are active at the optimizer z∗(x̄) ∈
Rs, i.e., in a case of primal degeneracy. In this case the vector of Lagrange
multipliers u∗

0 might not be uniquely defined, as the dual problem of (6.37)
is not strictly convex. Note that dual degeneracy and nonuniqueness of z∗(x̄)
cannot occur, as H ≻ 0.

First, consider a homogenous solution ū 6= 0 to (6.43):

(−GAH−1GA
′)ū = 0. (6.49)

Next we prove that GAH−1ū = 0. From (6.49), GA

√
H−1ȳ = 0 with

ȳ =
√

H−1G′
Aū. Therefore ȳ =

√
H−1GA

′ū ∈ Null(GA

√
H−1). Recall

that the null space of a linear transformation represented by the matrix
M , Null(M), equals the space orthogonal to Span(M ′). Therefore we have

ȳ =
√

H−1GA
′ū ∈ Span(

√
H−1GA

′)⊥. A vector ȳ ∈ Span(
√

H−1GA
′) and

ȳ ∈ Span(
√

H−1GA
′)⊥ can only be the zero vector:

H−1GA
′ū = 0. (6.50)

Let l , rankGA and consider the QR decomposition of −GAH−1G′
A

−GAH−1G′
A = Q

[
U1 U2

0|A|−l×l 0|A|−l×|A|−l

]

where Q ∈ R|A|×|A| is a unitary matrix, U1 ∈ Rl×l is a full-rank square matrix

and U2 ∈ Rl×|A|−l. Let

[
P
D

]
, −Q−1SA and

[
q
r

]
, Q−1WA. From (6.43)

we obtain
[

U1 U2 P
0|A|−l×l 0|A|−l×|A|−l D

]


u∗
A,1

u∗
A,2

x


 =

[
q
r

]
. (6.51)

Computing u∗
A,1 from (6.51) we obtain:

u∗
A,1 = U−1

1 (−U2u
∗
A,2 − Px + q) (6.52)
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In conclusion, we can substitute u∗
A =

[
u∗

A,1; u
∗
A,2

]
from (6.52) into (6.41) to

obtain

z∗ = H−1GA
′
[

U−1
1 (U2u

∗
A,2 + Px− q)

u∗
A,2

]
(6.53)

Next we prove that the terms with u∗
A,2 in(6.53) disappear. Note that the

vector

[
U−1

1 (U2u
∗
A,2)

u∗
A,2

]
is a homogenous solution to (6.43) and (6.51):

(−GAH−1GA
′)

[
U−1

1 (U2u
∗
A,2)

u∗
A,2

]
= 0,

and therefore from (6.49)-(6.50) we have

H−1GA
′
[

U−1
1 (U2u

∗
A,2)

u∗
A,2

]
= 0. (6.54)

Combining (6.53) and (6.54) we obtain

z∗ = H−1GA
′
[

U−1
1 (U2u

∗
A,2)

u∗
A,2

]
+H−1GA,1

′U−1
1 (Px−q) = H−1GA,1

′U−1
1 (Px−q)

(6.55)
where we have partitioned GA as GA = [GA,1; GA,2] and GA,1 ∈ Rl×s.

Note that z∗ is an affine function of x. J∗(x) = 1
2z∗(x)′Hz∗(x) and there-

fore is a quadratic function of x.
The critical region CRA is computed by substituting z∗ from (6.55) in the

primal feasibility conditions (6.40d)

Pp , {x : G(H−1GA,1
′U−1

1 (Px− q)) < W + Sx} (6.56)

and the Lagrange multipliers in (6.52) in the dual feasibility conditions (6.40c)

Pu∗
A,2,x , {[ u∗

A,2, x] : U−1
1 (−U2u

∗
A,2 − Px + q) ≥ 0, u∗

A,2 ≥ 0} (6.57)

The critical region CRA is the intersection of the sets Dx = r, Pp and
projx(Pu∗

A,2,x):

CRA = {x : Dx = r, x ∈ Pp, x ∈ projx(Pu∗
A,2,x)} (6.58)

The closure of CRA is a polyhedron in the x-space. 2

Remark 6.7. In general, the critical region polyhedron (6.46)-(6.48) is open
on facets arising from primal feasibility and closed on facets arising from dual
feasibility.

Remark 6.8. If D in (6.51) is nonzero, then from (6.58), CRA is a lower dimen-
sional region, which, in general, corresponds to a common boundary between
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two or more full-dimensional regions. Typically, the following definition is
introduced

Definition 6.4. For a given set of active constraints A we say that the Linear
Independence Constraint Qualification(LICQ) holds if the rows of GA are
linearly independent.

Under LICQ case 2 in Theorem 6.5 cannot occur.

6.3.3 Propagation of the Set of Active Constraints

The objective of this section is to briefly describe the propagation of the set
of active constraints when moving from one full-dimensional critical region to
a neighboring full-dimensional critical region. We will use a simple example
in order to illustrate the main points.

Example 6.6. Consider the mp-QP problem

J∗(x) = min
z

1
2z′Hz + x′Fz

subj. to Gz ≤W + Sx,
(6.59)

with

H =
[

8.18 −3.00 5.36
−3.00 5.00 −3.00
5.36 −3.00 10.90

]
, F =

[
0.60 0.00 1.80
5.54 −3.00 8.44

]
(6.60)

and

G =




1.00 −1.00 1.00
−1.00 1.00 −1.00
0.00 0.00 −0.30
−1.00 0.00 −1.00
0.00 0.00 0.30
1.00 0.00 1.00
−0.30 0.00 −0.60
0.00 −1.00 0.00
0.30 0.00 0.60
0.00 1.00 0.00
−1.00 0.00 0.00
1.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 −1.00
0.00 0.00 0.00
0.00 0.00 1.00
0.00 0.00 −1.00
0.00 0.00 1.00




, E =




0.00 −1.00
0.00 1.00
1.00 0.60
0.00 1.00
−1.00 −0.60
0.00 −1.00
1.00 0.90
0.00 0.00
−1.00 −0.90
0.00 0.00
0.00 0.00
0.00 0.00
1.00 0.30
0.00 1.00
−1.00 −0.30
0.00 −1.00
0.00 0.00
0.00 0.00




, W =




0.50
0.50
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
0.50
0.50
8.00
8.00
8.00
8.00
0.50
0.50




(6.61)

where K is given by
−8 ≤ x1 ≤ 8
−8 ≤ x2 ≤ 8.

(6.62)

A solution to the mp-QP problem is shown in Figure 6.9 and the constraints
which are active in each associated critical region are reported in Table 6.3.
Figure 6.9 and Table 6.3 report only full dimensional critical regions.

Since A1 is empty in CR1 from equations (6.46) and (6.47) we can conclude
that the facets of CR1 are facets of primal feasibility and therefore do not
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Critical Region Active Constraints
CR1 {}
CR2 {1}
CR3 {2}
CR4 {11}
CR5 {12}
CR6 {17}
CR7 {18}
CR8 {1,11}
CR9 {1,18}
CR10 {2,12}
CR11 {2,17}
CR12 {11,17}
CR13 {12,18}
CR14 {1,11,17}
CR15 {1,11,18}
CR16 {2,12,17}
CR17 {2,12,18}

Table 6.3 Example 6.6: Critical regions and corresponding set of active constraints.

x1

x
2 CR1

CR2

CR3

CR4

CR5

CR6
CR7

CR8
CR9

CR10
CR11

CR12

CR13

CR14

CR15

CR16

CR17

-10 -5 0 5 10

-10

-5

0

5

10

Fig. 6.9 Polyhedral partition of the parameter space corresponding to the solution
of Example 6.6

belong to CR1. In general, as discussed in Remark 6.7 critical regions are
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open on facets arising from primal feasibility and closed on facets arising
from dual feasibility. Next we focus on the closure of the critical regions.

By observing Figure 6.9 and Table 6.3 we notice that as we move away
from region CR1 (corresponding to no active constraints), the number of
active constraints increases. In particular, for any two neighboring full di-
mensional critical regions CRAi and CRAj have Ai ⊂ Aj and |Ai| = |Aj |− 1
or Aj ⊂ Ai and |Ai| = |Aj |+ 1. This means that as one moves from one full
dimensional region to a neighboring full dimensional region, one constraint
is either included to the list of active constraints or removed from it. This
happens for instance when moving from CR1 to CR6 to CR11 to CR16 to
CR10 to CR5 to CR13 to CR17.

Things become more complex if LICQ does not hold everywhere in K∗. In
particular, there might exist two neighboring full dimensional critical regions
CRAi and CRAj where Ai and Aj do not share any constraint and with
|Ai| = |Aj |. Also, CRAi might have multiple neighboring region on the same
facet. In other words, it can happen that the intersection of the closures of
two adjacent full-dimensional critical regions is a not a facet of both regions
but only a subset of it. We refer the reader to [243] for more details on such
a degenerate condition.

6.3.4 Value Function and Optimizer: Global Properties

The convexity of the value function J∗(x) and the continuity of the solution
z∗(x) easily follow from the general results on multiparametric programming
as proven in Corollary 5.2. In the following we give a simple proof based on
the linearity result of Theorem 6.5 together with a proof of the piecewise
linearity of the solution z∗(x). We remark that Proposition 6.1 proves that
the set of feasible parameters K∗ ⊆ K of an mp-QP is a polyhedron.

Theorem 6.6. Consider the multiparametric quadratic program (6.37) and
let H ≻ 0. Then, the optimizer z∗(x) : K∗ → Rs is continuous and piece-
wise affine on polyhedra, in particular it is affine in each critical region, and
the optimal solution J∗(x) : K∗ → R is continuous, convex and piecewise
quadratic on polyhedra.

Proof: We first prove convexity of J∗(x). Take generic x1, x2 ∈ K∗, and
let J∗(x1), J∗(x2) and z1, z2 the corresponding optimal values and mini-
mizers. By optimality of J∗(xα), J∗(xα) ≤ 1

2z′αHzα, and hence J∗(xα) −
1
2 [αz′1Hz1 + (1 − α)z′2Hz2] ≤ 1

2z′αHzα − 1
2 [αz′1Hz1 + (1 − α)z′2Hz2] =

1
2 [α2z′1Hz1 + (1− α)2z′2Hz2 + 2α(1− α)z′2Hz1 − αz′1Hz1 − (1− α)z′2Hz2] =
− 1

2α(1 − α)(z1 − z2)
′H(z1 − z2) ≤ 0, i.e. J∗(αx1 + (1 − α)x2) ≤ αJ∗(x1) +

(1 − α)J∗(x2), ∀x1, x2 ∈ K, ∀α ∈ [0, 1], which proves the convexity of J∗(x)
on K∗. Within the closed polyhedral regions CRi in K∗ the solution z∗(x)
is affine (6.45) by Theorem 6.5. The boundary between two regions belongs
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to both closed regions. Since H ≻ 0, the optimum is unique, and hence the
solution must be continuous across the boundary. Therefore z∗(x) : K∗ → Rs

is continuous and piecewise affine on polyhedra. The fact that J∗(x) is con-
tinuous and piecewise quadratic follows trivially. 2

6.3.4.1 Continuous Differentiability of the Value Function∗

Let J∗(x) be the convex and piecewise quadratic value function in (6.37):

J∗(x) = qi(x) , x′Qix + T ′
ix + Vi, if x ∈ CRi, i = 1, . . . , Nn. (6.63)

Through the next three theorems we will establish that if the mp-QP
problem (6.37) is not degenerate then J∗(x) is a C(1) function.

Theorem 6.7. Assume that the mp-QP problem (6.37) is not degenerate.
Consider the value function J∗(x) in (6.63) and let CRi, CRj be the clo-
sure of two neighboring critical regions corresponding to the set of active
constraints Ai and Aj, respectively, then

Qi −Qj � 0 or Qi −Qj � 0 and Qi 6= Qj (6.64)

and
Qi −Qj � 0 iff Ai ⊂ Aj , (6.65)

Proof: Let CRi and CRj be the closure of two neighboring critical regions
and Ai and Aj be the corresponding sets of active constraints at the optimum
of QP (6.37). Let Ai ⊂ Aj . We want to prove that the difference between the
quadratic terms of qi(x) and qj(x) is negative semidefinite, i.e., Qi −Qj � 0
and that Qi 6= Qj .

Without loss of generality we can assume that Ai = ∅. If this is not the
case a simple substitution of variables based on the set of active constraints
GAiz

∗ = WAi +SAix transforms Problem (6.37) into a QP in a lower dimen-
sional space.

For the unconstrained case we have z∗ = 0 and J∗
z (x) = 0. Consequently

qi(x) = 0. (6.66)

For the constrained case, from equation (6.45) we obtain

qj(x) =
1

2
x′(S′

Aj
Γ−1SAj )x + W ′

Aj
Γ−1SAj x +

1

2
W ′

Aj
Γ−1WAj , (6.67)

where Γ = GAj H
−1G̃′

Aj
, Γ = Γ ′ ≻ 0. The difference of the quadratic terms

of qi(x) and qj(x) gives

Qi −Qj = −1

2
S′

Aj
Γ−1SAj � 0. (6.68)
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What is left to prove is Qi 6= Qj. We will prove this by showing that
Qi = Qj if and only if CRi = CRj . From (6.46)-(6.47) the polyhedron CRj

where the set of active constraints Aj is constant is defined as

CRj = {x : GH−1G′
Aj

Γ−1(WAj +SAj x) ≤W+Sx, −Γ−1(WAj +SAj x) ≥ 0}.
(6.69)

From (6.68) we conclude that Qi = Qj if and only if SAj = 0. The continuity
of J∗

z (x) implies that qi(x) − qj(x) = 0 on the common facet of CRi and
CRj . Therefore, by comparing (6.66) and (6.67), we see that SAj = 0 implies
WAj = 0. Finally, for SAj = 0 and WAj = 0, from (6.69) it follows that
CRi = CRj = {x : 0 ≤W + Sx}. 2

The following property of convex piecewise quadratic functions was proved
in [230]:

Theorem 6.8. Consider the value function J∗(x) in (6.63) satisfying (6.64)
and its quadratic expression qi(x) and qj(x) on two neighboring polyhedra
CRi, CRj then

qi(x) = qj(x) + (a′x− b)(γa′x− b̄), (6.70)

where γ ∈ R/{0}.
Equation (6.70) states that the functions qi(x) and qj(x) in two neighboring
regions CRi, CRj of a convex piecewise quadratic function on polyhedra
satisfying (6.64) either intersect on two parallel hyperplanes: a′x − b and
γa′x − b̄ if b̄ 6= γb (see Figure 6.10(a)) or are tangent in one hyperplane:
a′x− b if b̄ = γb (see Figure 6.10(b)). We will prove next that if the mp-QP
problem (6.37) is not degenerate then J∗(x) is a C(1) function by showing
that the case depicted in Figure 6.10(a) is not consistent with Theorem 6.7.
In fact, Figure 6.10(a) depicts the case Qi − Qj � 0, that implies Ai ⊂ Aj

by Theorem 6.7. However qj(0) < qi(0) and from the definitions of qi and qj

this contradicts the fact that Ai ⊂ Aj .

Theorem 6.9. Assume that the mp-QP problem (6.37) is not degenerate,
then the value function J∗(x) in (6.63) is C(1).

Proof: We will prove by contradiction that b̄ = γb. Suppose there exists
two neighboring polyhedra CRi and CRj such that b̄ 6= γb. Without loss of
generality assume that (i) Qi−Qj � 0 and (ii) CRi is in the halfspace a′x ≤ b
defined by the common boundary. Let F̄ij be the common facet between CRi

and CRj and Fij its interior.
From (i) and from (6.70), either γ < 0 or γ = 0 if Qi − Qj = 0. Take

x0 ∈ Fij . For sufficiently small ε ≥ 0, the point x , x0 − aε belongs to CRi.

Let J∗(ε) , J∗(x0 − aε), qi(ε) , qi(x0 − aε), and consider

qi(ε) = qj(ε) + (a′aε)(γa′aε + (b̄ − γb)). (6.71)

From convexity of J∗(ε), J∗−(ε) ≤ J∗+(ε) where J∗−(ε) and J∗+(ε) are the
left and right derivatives of J∗(ε) with respect to ε. This implies q′j(ε) ≤ q′i(ε)
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Fig. 6.10 Two piecewise quadratic convex functions

where q′j(ε) and q′i(ε) are the derivatives of qj(ε) and qi(ε), respectively.

Condition q′j(ε) ≤ q′i(ε) is true if and only if −(b̄ − γb)) ≤ 2γ(a′a)ε, that

implies −(b̄− γb) < 0 since γ < 0 and ε > 0.

From (6.71) qj(ε) < qi(ε) for all ε ∈ (0, −(b̄−γb)
γa′a ).

Thus there exists x ∈ CRi with qj(x) < qi(x). This is a contradiction since
from Theorem 6.7, Ai ⊂ Aj . 2

Note that in case of degeneracy the value function J∗(x) in (6.63) may not
be C(1). The following counterexample was given in [44].

Example 6.7. Consider the mp-QP (6.37) with

H =




3 3 −1
3 11 23
−1 23 75




G =




1 1 1
1 3 5
−1 −1 −1
−1 −3 −5
−1 0 0
0 −1 0
0 0 −1




W =




1
0
−1
0
0
0
0




S =




0
1
0
−1
0
0
0




(6.72)

and K = {x ∈ R|1 ≤ x ≤ 5}.
The problem was solved by using Algorithm 6.3.1 described next. The

solution consists of 5 critical regions. The critical regions and the expression
of the value function are reported in Table 6.4. The reader can verify that the
value function is not continuously differentiable at x = 3. Indeed, at x = 3 the
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Fig. 6.11 Generic mp-QP algorithm

LICQ condition does not hold and therefore, the hypothesis of Theorem 6.9
is not fulfilled.

Region Optimal value
CR{1,2,3,4,6} = {x : 1 ≤ x < 1.5} 2.5x2 − 6x + 5
CR{1,2,3,4} = {x : 1.5 ≤ x ≤ 2} 0.5x2 + 0.5
CR{1,2,3,4,7} = {x : 2 < x < 3} x2 − 2x + 2.5
CR{1,2,3,4,5,7} = {x : x = 3} x2 − 2x + 2.5
CR{1,2,3,4,5} = {x : 3 < x ≤ 5} 5x2 − 24x + 32.5

Table 6.4 Critical regions and value function corresponding to the solution of Ex-
ample 6.7

6.3.5 mp-QP Algorithm

The goal of an mp-QP algorithm is to determine the partition of K∗ into
critical regions CRi, and find the expression of the functions J∗(·) and z∗(·)
for each critical region. Figure 6.11 sketches the two main components of a
generic mp-QP algorithm. The active set generator computes the set of active
constraints Ai. The KKT solver computes CRAi and the expression of J∗(·)
and z∗(·) in CRAi as explained in Theorem 6.5. The active set generator
is the critical part. In principle, one could simply generate all the possible
combinations of active sets. However, in many problems only a few active
constraints sets generate full-dimensional critical regions inside the region of
interest K. Therefore, the goal is to design an active set generator algorithm
which computes only the active sets Ai with the associated full-dimensional
critical regions covering only K∗.

Next an implementation of a mp-QP algorithm is described. See Section 6.6
for a literature review on alternative approaches to the solution of mp-QPs.

In order to start solving the mp-QP problem, we need an initial vector x0

inside the polyhedral set K∗ of feasible parameters. A possible choiche for x0

is the Chebychev center (see Section 3.4.5) of K∗:
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maxx,z̄,ǫ ǫ
subj. to Tix + ǫ‖Ti‖2 ≤ Ni, i = 1, . . . , nT

Gz̄ − Sx ≤W
(6.73)

where nT is the number of rows Ti of the matrix T defining the set K in (6.2).
If ǫ ≤ 0, then the QP problem (6.37) is infeasible for all x in the interior of
K. Otherwise, we set x = x0 and solve the QP problem (6.37), in order
to obtain the corresponding optimal solution z∗0 . Such a solution is unique,
because H ≻ 0. The value of z∗0 defines the following optimal partition

A(x0) , {j ∈ J : Gjz
∗
0 − Sjx0 −Wj = 0}

NA(x0) , {j ∈ J : Gjz
∗
0 − Sjx0 −Wj < 0} (6.74)

and consequently the critical region CRA(x0). Once the critical region CRA(x0)

has been defined, the rest of the space Rrest = K\CRA(x0) has to be explored
and new critical regions generated. An approach for generating a polyhe-
dral partition {R1, . . . , Rnrest} of the rest of the space Rrest is described in
Theorem 3.1 in Section 3.4.7. Theorem 3.1 provides a way of partitioning the
non-convex set K\CR0 into polyhedral subsets Ri. For each Ri, a new vector
xi is determined by solving the LP (6.73), and, correspondingly, an optimum
z∗i , a set of active constraints Ai, and a critical region CRi. The procedure
proposed in Theorem 3.1 for partitioning the set of parameters allows one
to recursively explore the parameter space. Such an iterative procedure ter-
minates after a finite time, as the number of possible combinations of active
constraints decreases with each iteration. Two following main elements need
to be considered:

1. As for the mp-LP algorithm, the partitioning in Theorem 3.1 defines new
polyhedral regions Rk to be explored that are not related to the critical
regions which still need to be determined. This may split some of the
critical regions, due to the artificial cuts induced by Theorem 3.1. Post-
processing can be used to join cut critical regions [39]. As an example, in
Figure 6.8 the critical region CR{3,7} is discovered twice, one part during
the exploration of R1 and the second part during the exploration of R2.
Although algorithms exist for convexity recognition and computation of
the union of polyhedra, the post-processing operation is computationally
expensive. Therefore, it is more efficient not to intersect the critical region
obtained by (6.27) with halfspaces generated by Theorem 3.1, which is
only used to drive the exploration of the parameter space. Then, no post
processing is needed to join subpartitioned critical regions. On the other
hand, some critical regions may appear more than once. Duplicates can
be uniquely identified by the set of active constraints A(x) and can be
easily eliminated. To this aim, in the implementation of the algorithm we
keep a list of all the critical regions which have already been generated
in order to avoid duplicates. In Figure 6.8 the critical region CR{3,7} is
discovered twice but stored only once.



114 6 Multiparametric Programming: a Geometric Approach

2. If case 2 occurs in Theorem 6.5 and D is nonzero, CRA is a lower di-
mensional critical region (see Remark 6.8). Therefore it is not worth to
explore the actual combination GA, SA, WA. On the other hand, if D = 0
the KKT conditions do not lead directly to (6.46)–(6.47). In this case, a
full-dimensional critical region can be obtained from (6.58) by projecting
the set Px,u∗

A,2
in (6.57), which, however, is computationally expensive.

We suggest the following simpler way to handle case 2 in Theorem 6.5:
collect r constraints chosen to satisfy the LICQ, and proceed with the new
reduced set, therefore avoiding the computation of projections. Because
of the recursive nature of the algorithm, the remaining other possible
subsets of combinations of constraints leading to full-dimensional critical
regions will automatically be explored later.

Based on the above discussion and results, the main steps of the mp-QP
solver are outlined in the following algorithm.

Algorithm 6.3.1

Input: Matrices H, G, W, S of Problem (6.37) and set K in (6.2)

Output: Multiparametric solution to Problem (6.37)

1 execute partition(K);

2 end.

procedure partition(Y )

3 let x0 ∈ Y and ǫ the solution to the LP (6.73);

4 if ǫ ≤ 0 then exit; (no full dimensional CR is in Y )

5 Solve the QP (6.37) for x = x0 to obtain (z∗0 , u∗
0);

6 Determine the set of active constraints A when z = z∗0 , x = x0,

and build GA, WA, SA;

7 If r = rankGA is less than the number ℓ of rows of GA, take

a subset of r linearly independent rows, and redefine

GA, WA, SA accordingly;

8 Determine u∗
A(x), z∗(x) from (6.44) and (6.45);

9 Characterize the CR from (6.46) and (6.47);

10 Define and partition the rest of the region as in Theorem 3.1;

11 For each new sub-region Ri, partition(Ri); end procedure.

The algorithm explores the set K of parameters recursively: Partition the
rest of the region as in Theorem 3.1 into polyhedral sets Ri, use the same
method to partition each set Ri further, and so on.

Remark 6.9. The algorithm solves the mp-QP problem by partitioning the
given parameter set K into Nr closed polyhedral regions. Note that the al-
gorithm generates a partition of the state space which is not strict. The
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algorithm could be modified to store the critical regions as defined in Sec-
tion 6.1.2. (which are neither closed nor open as proven in Theorem 6.5)
instead of storing their closure. This can be done by keeping track of which
facet belongs to a certain critical region and which not. From a practical
point of view, such procedure is not necessary since the value function and
the optimizer are continuous functions of x.
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6.4 Multiparametric Mixed-Integer Linear

Programming

6.4.1 Formulation and Properties

Consider the mp-LP

J∗(x) = min
z
{J(z, x) = c′z}

subj. to Gz ≤W + Sx.
(6.75)

where z is the optimization vector, x ∈ Rs is the vector of parameters, G′ =
[G1

′ . . .Gm
′] and Gj ∈ Rn denotes the j-th row of G, c ∈ Rs, W ∈ Rm, and

S ∈ Rm×n. When we restrict some of the optimization variables to be 0 or 1,
z , {zc, zd}, zc ∈ Rsc , zd ∈ {0, 1}sd and s , sc + sd, we refer to (6.75) as a
(right-hand-side) multiparametric mixed-integer linear program (mp-MILP).

6.4.2 Geometric Algorithm for mp-MILP

Consider the mp-MILP (6.75). Given a closed and bounded polyhedral set
K ⊂ Rn of parameters,

K , {x ∈ Rn : Tx ≤ N}, (6.76)

we denote by K∗ ⊆ K the region of parameters x ∈ K such that the
MILP (6.75) is feasible and the optimum J∗(x) is finite. For any given
x̄ ∈ K∗, J∗(x̄) denotes the minimum value of the objective function in prob-
lem (6.75) for x = x̄. The function J∗ : K∗ → R will denote the function
which expresses the dependence on x of the minimum value of the objective
function over K∗, J∗ will be called value function. The set-valued function
Z∗ : K∗ → 2R

sc × 2{0,1}sd will describe for any fixed x ∈ K∗ the set of
optimizers z∗(x) related to J∗(x).

We aim to determine the region K∗ ⊆ K of feasible parameters x and
to find the expression of the value function J∗(x) and the expression of an
optimizer function z∗(x) ∈ Z∗(x).

Two main approaches have been proposed for solving mp-MILP problems.
In [2], the authors develop an algorithm based on branch and bound (B&B)
methods. At each node of the B&B tree an mp-LP is solved. The solution at
the root node represents a valid lower bound, while the solution at a node
where all the integer variables have been fixed represents a valid upper bound.
As in standard B&B methods, the complete enumeration of combinations of
0-1 integer variables is avoided by comparing the multiparametric solutions,
and by fathoming the nodes where there is no improvement of the value
function.
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In [91] an alternative algorithm was proposed, which will be detailed in
this section. Problem (6.75) is alternatively decomposed into an mp-LP and
an MILP subproblem. When the values of the binary variable are fixed, an
mp-LP is solved, and its solution provides a parametric upper bound to the
value function J∗(x). When the parameters in x are treated as free variables,
an MILP is solved, that provides a new integer vector. The algorithm is
composed of an initialization step, and a recursion between the solution of
an mp-LP subproblem and an MILP subproblem.

6.4.2.1 Initialization

Solve the following MILP problem

min
{z,x}

c′z

subj. to Gz − Sx ≤W
x ∈ K

(6.77)

where x is treated as an independent variable. If the MILP (6.77) is infeasible
then the mp-MILP (6.75) admits no solution, i.e. K∗ = ∅; otherwise its
solution z∗ provides a feasible integer variable z̄d.

6.4.2.2 mp-LP subproblem

At a generic step of the algorithm we have a polyhedral partition of the initial
set of parameters K. For each polyhedron of the partition we know if

1. the MILP (6.77) is infeasible for all x belonging to the polyhedron.
2. the MILP (6.77) is feasible for all x belonging to the polyhedron and we

have a current upper bound on the affine value function J∗(x) (in the
polyhedron) and an integer variable that improves the bound at least at
a point x of the polyhedron,

3. the MILP (6.77) is feasible for all x belonging to the polyhedron and we
know the optimal affine value function J∗(x) inside the polyhedron.

Obviously the algorithm will continue to iterate only on the polyhedra corre-
sponding to point 2 above (if there is no such a polyhedron then the algorithm
ends) and in particular, at step j we assume to have stored

1. A list of Nj polyhedral regions CRi and for each of them an associated
parametric affine upper bound J̄i(x) (J̄i(x) = +∞ if no integer solution
has been found yet in CRi).

2. For each CRi a set of integer variables Zi = z̄0
di

, . . . , z̄Nbi

di
, that have

already been explored in the region CRi.
3. For each CRi an integer feasible variable z̄Nbi+1

di
/∈ Zi such that there

exists zc and x̂ ∈ CRi for which Gz ≤ W + Sx̂ and c′z < J̄i(x̂) where
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z = {zc, z̄
Nbi+1
di

}. That is, z̄Nbi+1
di

is an integer variable that improves the
current bound for at least one point of the current polyhedron.

At step j = 0, set: N0 = 1, CR1 = K, Z1 = ∅, J̄1 = +∞, z̄1
d1

= z̄d.
For each CRi we solve the following mp-LP problem

J̃i(x) = min
z

c′z

subj. to Gz ≤W + Sx

zd = z̄Nbi+1
di

x ∈ CRi

(6.78)

By Theorem 6.4, the solution of mp-LP (6.78) provides a partition of CRi

into polyhedral regions Rk
i , k = 1, . . . , NRi and and a PWA value function

J̃i(x) = (J̃R
k

i (x) , ck
i x + pk

i ) if x ∈ Rk
i , k = 1, . . . , NRi (6.79)

where J̃R
j

i (x) = +∞ in Rj
i if the integer variable z̄di is not feasible in Rj

i and

a PWA continuous control law z∗(x) (z∗(x) is not defined in Rj
i if J̃R

j

i (x) =
+∞).

The function J̃i(x) will be an upper bound of J∗(x) for all x ∈ CRi. Such
a bound J̃i(x) on the value function has to be compared with the current
bound J̄i(x) in CRi in order to obtain the lowest of the two parametric value
functions and to update the bound.

While updating J̄i(x) three cases are possible:

1. J̄i(x) = J̃R
k

i (x) ∀x ∈ Rk
i if (J̃R

k

i (x) ≤ J̄i(x) ∀ x ∈ Rk
i )

2. J̄i(x) = J̄i(x) ∀x ∈ Rk
i (if J̃R

k

i (x) ≥ J̄i(x) ∀ x ∈ Rk
i )

3. J̄i(x) =

{
J̄i(x) ∀x ∈ (Rk

i )1 , {x ∈ Rk
i : J̃R

k

i (x) ≥ J̄i(x)}
J̃R

k

i (x) ∀x ∈ (Rk
i )2 , {x ∈ Rk

i : J̃R
k

i (x) ≤ J̄i(x)}
The three cases above can be distinguished by using a simple linear program.
In the third case, the region Rk

i is partitioned into two regions (Rk
i )1 and

(Rk
i )2 that are convex polyhedra since J̃R

k

i (x) and J̄i(x) are affine functions
of x.

After the mp-LP (6.78) has been solved for all i = 1, . . . , Nj (the subindex
j denotes the that we are at step j of the recursion) and the value function has
been updated, each initial region CRi has been subdivided into at most 2NRi

polyhedral regions Rk
i and possibly (Rk

i )1 and (Rk
i )2 with a corresponding

updated parametric bound on the value function J̄i(x). For each Rk
i , (Rk

i )1
and (Rk

i )2 we define the set of integer variables already explored as Zi =
Zi

⋃
z̄Nbi+1

di
, Nbi = Nbi +1. In the sequel the polyhedra of the new partition

will be referred to as CRi.
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6.4.2.3 MILP subproblem

At step j for each critical region CRi (note that these CRi are the output of
the previous phase) we solve the following MILP problem.

min
{z,x}

c′z (6.80)

subj. to Gz − Sx ≤W (6.81)

c′z ≤ J̄i(z) (6.82)

zd 6= z̄k
di

, k = 1, . . . , Nbi (6.83)

x ∈ CRi (6.84)

where constraints (6.83) prohibit integer solutions that have been already
analyzed in CRi from appearing again and constraint (6.82) excludes integer
solutions with higher values than the current upper bound. If problem (6.84)
is infeasible then the region CRi is excluded from further recursion and the
current upper bound represents the final solution. If problem (6.84) is feasible,
then the discrete optimal component z∗di

is stored and represents a feasible
integer variable that is optimal at least in one point of CRi.

6.4.2.4 Recursion

For all the region CRi not excluded from the MILP’s subproblem (6.80)-
(6.84) the algorithm continues to iterate between the mp-LP (6.78) with
z̄Nbi+1

di
= z∗di

and the MILP (6.80)-(6.84). The algorithm terminates when all
the MILPs (6.80)-(6.84) are infeasible.

Note that the algorithm generates a partition of the state space. Some
parameter x could belong to the boundary of several regions. Differently from
the LP and QP case, the value function may be discontinuous and therefore
such a case has to be treated carefully. If a point x belong to different critical
regions, the expressions of the value function associated with such regions
have to be compared in order to assign to x the right optimizer. Such a
procedure can be avoided by keeping track of which facet belongs to a certain
critical region and which not. Moreover, if the value functions associated with
the regions containing the same parameter x coincide this may imply the
presence of multiple optimizers.

6.4.3 Theoretical Results

The following properties of J∗(x) and Z∗(x) easily follow from the algorithm
described above.
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Theorem 6.10. Consider the mp-MILP (6.75). Then, the set K∗ is the
union of a finite number of (possibly open) polyhedra and the value function
J∗ is piecewise affine on polyhedra. If the optimizer z∗(x) is unique for all
x ∈ K∗, then the optimizer functions z∗c : K∗ → Rsc and z∗d : K∗ → {0, 1}sd

are piecewise affine and piecewise constant, respectively, on polyhedra. Oth-
erwise, it is always possible to define a piecewise affine optimizer function
z∗(x) ∈ Z∗(x) for all x ∈ K∗.

Note that differently from the mp-LP case, the set K∗ can be non-convex
and even disconnected.
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6.5 Multiparametric Mixed-Integer Quadratic

Programming

6.5.1 Formulation and Properties

Consider the mp-QP

J∗(x) = min
z

J(z, x) = z′H1z + c1z

subj. to Gz ≤W + Sx,
(6.85)

When we restrict some of the optimization variables to be 0 or 1, z , {zc, zd},
where zc ∈ Rsc , zd ∈ {0, 1}sd , we refer to (6.85) as a multiparametric mixed-
integer quadratic program (mp-MIQP). Given a closed and bounded polyhe-
dral set K ⊂ Rn of parameters,

K , {x ∈ Rn : Tx ≤ N}, (6.86)

we denote by K∗ ⊆ K the region of parameters x ∈ K such that the
MIQP (6.85) is feasible and the optimum J∗(x) is finite. For any given x̄ ∈ K∗,
J∗(x̄) denotes the minimum value of the objective function in problem (6.85)
for x = x̄. The value function J∗ : K∗ → R denotes the function which ex-
presses the dependence on x of the minimum value of the objective function
over K∗. The set-valued function Z∗ : K∗ → 2R

sc × 2{0,1}sd describes for any
fixed x ∈ K∗ the set of optimizers z∗(x) related to J∗(x).

We aim at determining the region K∗ ⊆ K of feasible parameters x and at
finding the expression of the value function J∗(x) and the expression of an
optimizer function z∗(x) ∈ Z∗(x).

We show with a simple example that the geometric approach in this chap-
ter cannot be used for solving mp-MIQPs. Suppose z1, z2, x1, x2 ∈ R and
δ ∈ {0, 1}, then the following mp-MIQP
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J∗(x1, x2) = minz1,z2,δ z2
1 + z2

2 − 25δ + 100

subj. to




1 0 10
−1 0 10

0 1 10
0 −1 10
1 0 −10
−1 0 −10

0 1 −10
0 −1 −10
0 0 0
0 0 0
0 0 0
0 0 0







z1

z2

δ


 ≤




1 0
−1 0

0 1
0 −1
0 0
0 0
0 0
0 0
1 0
−1 0

0 1
0 −1




[
x1

x2

]
+




10
10
10
10
0
0
0
0
10
10
10
10




(6.87)
can be simply solved by noting that for δ = 1 z1 = x1 and z2 = x2 while for
δ = 0 z1 = z2 = 0. By comparing the value functions associated with δ = 0
and δ = 1 we obtain two critical regions

CR1 = {x1, x2 ∈ R : x2
1 + x2

2 ≤ 75}
CR2 = {x1, x2 ∈ R : − 10 ≤ x1 ≤ 10, − 10 ≤ x2 ≤ 10, x2

1 + x2
2 > 75}

(6.88)
with the associated parametric optimizer

z∗1(x1, x2) =

{
x1 if [x1, x2] ∈ CR1

0 if [x1, x2] ∈ CR2

z∗2(x1, x2) =

{
x2 if [x1, x2] ∈ CR1

0 if [x1, x2] ∈ CR2

(6.89)

and the parametric value function

J∗(x1, x2) =

{
x2

1 + x2
2 + 75 if [x1, x2] ∈ CR1

100 if [x1, x2] ∈ CR2
(6.90)

The two critical regions and the value function are depicted in Figure 6.12.
This example demonstrate that, in general, the critical regions of an mp-

MIQP cannot be decomposed into convex polyhedra. Therefore the method
of partitioning the rest of the space presented in Theorem 3.1 cannot be
applied here.

To the authors’ knowledge, there does not exist an efficient method for
solving general mp-MIQPs. In Chapter 15 we will present an algorithm
that efficiently solves specific mp-MIQPs that stem from optimal control of
discrete-time hybrid systems.
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Fig. 6.12 Solution to the mp-MIQP (6.87)

6.6 Literature Review

Many of the theoretical results on parametric programming can be found
in[17, 100, 43, 107].

The first method for solving parametric linear programs was proposed by
Gass and Saaty [111], and since then extensive research has been devoted to
sensitivity and (multi)-parametric linear analysis, as attested by the hundreds
of references in [106] (see also [107] for recent advances in the field). One of
the first methods for solving multiparametric linear programs (mp-LPs) was
formulated by Gal and Nedoma [108]. The method constructs the critical
regions iteratively, by visiting the graph of bases associated with the LP
tableau of the original problem. Many of the results presented in this book
on mp-LPs can be found in [106, p. 178-180].

Note that in [108, 106] a critical region is defined as a subset of the pa-
rameter space on which a certain basis of the linear program is optimal. The
algorithm proposed in [108] for solving multiparametric linear programs gen-
erates non-overlapping critical regions by generating and exploring the graph
of bases. In the graph of bases the nodes represent optimal bases of the given
multiparametric problem and two nodes are connected by an edge if it is
possible to pass from one basis to another by one pivot step (in this case the
bases are called neighbors). In this book we use the definition (6.4) of criti-
cal regions which is not associated with the bases but with the set of active
constraints and it is directly related to the definition given in [3, 191, 107].

The solution to multiparametric quadratic programs has been studied in detail
in [17, Chapter 5]. Bemporad and coauthors in [39] presented a simple method
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for solving mp-QPs. The method constructs a critical region in a neighbor-
hood of a given parameter, by using the Karush-Kuhn-Tucker conditions for
optimality, and then recursively explores the parameter space outside such a
region. Other algorithms for solving mp-QPs have been proposed by Seron,
DeDoná and Goodwin in [236, 89] in parallel with the study of Bemporad
and coauthors in [39], by Tondel, Johansen and Bemporad in [248] and by
Baotic in [18]. All these algorithms are based on an iterative procedure that
builds up the parametric solution by generating new polyhedral regions of
the parameter space at each step. The methods differ in the way they ex-
plore the parameter space, that is, the way they identify active constraints
corresponding to the critical regions neighboring to a given critical region,
i.e., in the “active set generator” component.

In [236, 89] the authors construct the unconstrained critical region and
then generate neighboring critical regions by enumerating all possible com-
binations of active constraints.

In [248] the authors explore the parameter space outside a given region CRi

by examining its set of active constraints Ai. The critical regions neighboring
to CRi are constructed by elementary operations on the active constraints
set Ai that can be seen as an equivalent “pivot” for the quadratic program.
For this reason the method can be considered as an extension of the method
of Gal [106] to multiparametric quadratic programming.

In [18] the author uses a direct exploration of the parameter space as in [39]
but he avoids the partition of the state space described in Theorem 3.1. Given
a polyhedral critical region CRi, the procedure goes through all its facets and
generates the Chebychev center of each facet. For each facet Fi a new param-
eter xi

ε is generated, by moving from the center of the facet in the direction
of the normal to the facet by a small step. If such parameter xi

ε is infeasible
or is contained in a critical region already stored, then the exploration in the
direction of Fi stops. Otherwise, the set of active constraints corresponding
to the critical region sharing the facet Fi with the region CRi is found by
solving a QP for the new parameter xi

ε.

In [2, 91] two approaches were proposed for solving mp-MILP problems.
In both methods the authors use an mp-LP algorithm and a branch and
bound strategy that avoids the complete enumeration of combinations of 0-1
integer variables by comparing the available bounds on the multiparametric
solutions.
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Optimal Control





Chapter 7

General Formulation and Discussion

In this chapter we introduce the optimal control problem we will be studying
in a very general form. We want to communicate the basic definitions and
essential concepts. We will sacrifice mathematical precision for the sake of
simplicity. In later chapters we will study specific versions of this problem for
specific cost functions and system classes in greater detail.

7.1 Problem Formulation

We consider the nonlinear time-invariant system

x(t + 1) = g(x(t), u(t)), (7.1)

subject to the constraints

h(x(t), u(t)) ≤ 0 (7.2)

at all time instants t ≥ 0. In (7.1)–(7.2), x(t) ∈ Rn and u(t) ∈ Rm are the
state and input vector, respectively. Inequality (7.2) with h : Rn×Rm → Rnc

expresses the nc constraints imposed on the input and the states. These
may be simple upper and lower bounds or more complicated expressions. We
assume that the origin is an equilibrium point (g(0, 0) = 0) in the interior of
the feasible set, i.e., h(0, 0) < 0.

We assumed the system to be specified in discrete time. One reason is
that we are looking for solutions to engineering problems. In practice, the
controller will almost always be implemented through a digital computer by
sampling the variables of the system and transmitting the control action to
the system at discrete time points. Another reason is that for the solution
of the optimal control problems for discrete-time systems we will be able to
make ready use of powerful mathematical programming software.

127
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We want to caution the reader, however, that in many instances the dis-
crete time model is an approximation of the continuous time model. It is
generally difficult to derive “good” discrete time models from nonlinear con-
tinuous time models, and especially so when the nonlinear system has dis-
continuities as would be the case for switched systems. We also note that
continuous time switched systems can exhibit behavioral characteristics not
found in discrete-time systems, for example, an ever increasing number of
switches in an ever decreasing time interval (Zeno behavior [118]).

We define the following performance objective or cost function from time
instant 0 to time instant N

J0→N (x0, U0→N ) , p(xN ) +

N−1∑

k=0

q(xk, uk) (7.3)

where N is the time horizon and xk denotes the state vector at time k ob-
tained by starting from the measured state x0 = x(0) and applying to the
system model

xk+1 = g(xk, uk), (7.4)

the input sequence u0, . . . , uk−1. From this sequence we define the vector of
future inputs U0→N , [u′

0, . . . , u
′
N−1]

′ ∈ Rs, s , mN . The terms q(xk, uk)
and p(xN ) are referred to as stage cost and terminal cost, respectively, and
are assumed to be positive definite (q ≻ 0, p ≻ 0):

p(x, u) > 0 ∀x 6= 0, u 6= 0, p(0, 0) = 0
q(x, u) > 0 ∀x 6= 0, u 6= 0, q(0, 0) = 0

The form of the cost function (7.3) is very general. If a practical control
objective can be expressed as a scalar function then this function usually
takes the indicated form. Specifically, we consider the following constrained
finite time optimal control (CFTOC) problem.

J∗
0→N (x0) = minU0→N J0→N (x0, U0→N )

subj. to xk+1 = g(xk, uk), k = 0, . . . , N − 1
h(xk, uk) ≤ 0, k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0)

(7.5)

Here Xf ⊆ Rn is a terminal region that we want the system states to reach at
the end of the horizon. The terminal region could be the origin, for example.
We define X0→N ⊆ Rn to be the set of initial conditions x(0) for which
there exists an input vector U0→N so that the inputs u0, . . . , uN−1 and the
states x0, . . . , xN satisfy the model xk+1 = g(xk, uk) and the constraints
h(xk, uk) ≤ 0 and that the state xN lies in the terminal set Xf .
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We can determine this set of feasible initial conditions in a recursive man-
ner. Let us denote with Xj→N the set of states xj at time j which can be
steered into Xf at time N , i.e., for which the model xk+1 = g(xk, uk) and
the constraints h(xk, uk) ≤ 0 are feasible for k = j, . . . , N − 1 and xN ∈ Xf .
This set can be defined recursively by

Xj→N = {x ∈ Rn : ∃u such that (h(x, u) ≤ 0, and g(x, u) ∈ Xj+1→N )},
j = 0, . . . , N − 1 (7.6)

XN→N = Xf . (7.7)

The set X0→N is the final result of these iterations starting with Xf .
The optimal cost J∗

0→N (x0) is also called value function. In general, the
problem (7.3)–(7.5) may not have a minimum, but only an infimum. We will
assume that there exists a minimum. This is the case, for example, when the
set of feasible input vectors U0→N (defined by h and Xf ) is compact and when
the functions g, p and q are continuous. Also, there might be several input
vectors U∗

0→N which yield the minimum (J∗
0→N (x0) = J0→N (x0, U

∗
0→N)). In

this case we will define one of them as the minimizer U∗
0→N .

Note that throughout the book we will distinguish between the current
state x(k) of system (7.1) at time k and the variable xk in the optimization
problem (7.5), that is the predicted state of system (7.1) at time k obtained
by starting from the state x0 and applying to system (7.4) the input sequence
u0, . . . , uk−1. Analogously, u(k) is the input applied to system (7.1) at time k
while uk is the k-th optimization variable of the optimization problem (7.5).
Clearly, x(k) = xk for any k if u(k) = uk for all k.

In the rest of this chapter we will be interested in the following questions
related to the general optimal control problem (7.3)–(7.5).

• Solution. We will show that the problem can be expressed and solved either
as one general nonlinear programming problem, or in a recursive manner
by invoking Bellman’s Principle of Optimality.

• Infinite horizon. We will investigate if a solution exists as N → ∞, the
properties of this solution, and how it can be obtained or at least approx-
imated by using a receding horizon technique.

7.2 Solution via Batch Approach

If we write the equality constraints appearing in (7.5) explicitly

x1 = g(x(0), u0)
x2 = g(x1, u1)
...
xN = g(xN−1, uN−1)

(7.8)
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then the optimal control problem (7.3)–(7.5), rewritten below

J∗
0→N (x0) = minU0→N p(xN ) +

∑N−1
k=0 q(xk, uk)

subj. to x1 = g(x0, u0)
x2 = g(x1, u1)
...
xN = g(xN−1, uN−1)
h(xk, uk) ≤ 0, k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0)

(7.9)

is recognized more easily as a general nonlinear programming problem with
variables u0, . . . , uN−1 and x1, . . . , xN .

As an alternative we may try to eliminate the state variables and equal-
ity constraints (7.8) by successive substitution so that we are left with
u0, . . . , uN−1 as the only decision variables. For example, we can express x2

as a function of x(0), u0 and u1 only, by eliminating the intermediate state
x1

x2 = g(x1, u1)
x2 = g(g(x(0), u0), u1).

(7.10)

Except when the state equations are linear this successive substitution may
become complex. Even when they are linear it may be bad from a numerical
point of view.

Either with or without successive substitution the solution of the nonlinear
programming problem is a sequence of present and future inputs U∗

0→N =

[u∗′

0 , . . . , u∗′

N−1]
′ determined for the particular initial state x(0).

7.3 Solution via Recursive Approach

The recursive approach, Bellman’s dynamic programming technique, rests
on a simple idea, the principle of optimality. It states that for a trajectory
x0, x

∗
1, . . . , x

∗
N to be optimal, the trajectory starting from any intermediate

point x∗
j , i.e. x∗

j , x
∗
j+1, . . . , x

∗
N , 0 ≤ j ≤ N − 1, must be optimal.

Consider the following example to provide an intuitive justification [46].
Suppose that the fastest route from Los Angeles to Boston passes through
Chicago. Then the principle of optimality formalizes the obvious fact that
the Chicago to Boston portion of the route is also the fastest route for a trip
that starts from Chicago and ends in Boston.

We can utilize the principle of optimality for the optimal control problem
we are investigating. We define the cost over the reduced horizon from j to
N
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Jj→N (xj , uj, uj+1, . . . , uN−1) , p(xN ) +

N−1∑

k=j

q(xk, uk), (7.11)

also called the cost-to-go. Then the optimal cost-to-go J∗
j→N is

J∗
j→N (xj) , minuj ,uj+1,...,uN−1 Jj→N (xj , uj, uj+1, . . . , uN−1)

subj. to xk+1 = g(xk, uk), k = j, . . . , N − 1
h(xk, uk) ≤ 0, k = j, . . . , N − 1
xN ∈ Xf

(7.12)

Note that the optimal cost-to-go J∗
j→N (xj) depends only on the initial state

xj .
The principle of optimality implies that the optimal cost-to-go J∗

j−1→N

from time j − 1 to the final time N can be found by minimizing the sum of
the stage cost q(xj−1, uj−1) and the optimal cost-to-go J∗

j→N (xj) from time
j onwards.

J∗
j−1→N (xj−1) = min

uj−1

q(xj−1, uj−1) + J∗
j→N (xj)

subj. to xj = g(xj−1, uj−1)
h(xj−1, uj−1) ≤ 0
xj ∈ Xj→N

(7.13)

Here the only decision variable left for the optimization is uj−1, the input
at time j − 1. All the other inputs u∗

j , . . . , u
∗
N−1 have already been selected

optimally to yield the optimal cost-to-go J∗
j→N (xj). We can rewrite (7.13) as

J∗
j−1→N (xj−1) = min

uj−1

q(xj−1, uj−1) + J∗
j→N (g(xj−1, uj−1))

subj. to h(xj−1, uj−1) ≤ 0
g(xj−1, uj−1) ∈ Xj→N ,

(7.14)

making the dependence of xj on the initial state xj−1 explicit.
The optimization problem (7.14) suggests the following recursive algorithm

backwards in time to determine the optimal control law. We start with the
terminal cost and constraint

J∗
N→N (xN ) = p(xN ) (7.15)

XN→N = Xf , (7.16)

and then proceed backwards
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J∗
N−1→N (xN−1) = min

uN−1

q(xN−1, uN−1) + J∗
N→N (g(xN−1, uN−1))

subj. to h(xN−1, uN−1) ≤ 0,
g(xN−1, uN−1) ∈ XN→N

...
J∗

0→N (x0) = min
u0

q(x0, u0) + J∗
1→N (g(x0, u0))

subj. to h(x0, u0) ≤ 0,
g(x0, u0) ∈ X1→N

x0 = x(0).
(7.17)

This algorithm, popularized by Bellman, is referred to as dynamic program-
ming. The dynamic programming problem is appealing because it can be
stated compactly and because at each step the optimization takes place over
one element uj of the optimization vector only. This optimization is rather
complex, however. It is not a standard nonlinear programming problem but
we have to construct the optimal cost-to-go J∗

j→N (xj), a function defined
over the subset Xj→N of the state space.

In a few special cases we know the type of function and we can find it
efficiently. For example, in the next chapter we will cover the case when the
system is linear and the cost is quadratic. Then the optimal cost-to-go is also
quadratic and can be constructed rather easily. Later in the book we will
show that, when constraints are added to this problem, the optimal cost-to-
go becomes piecewise quadratic and efficient algorithms for its construction
are also available.

In general, however, we may have to resort to a “brute force” approach to
construct the cost-to-go function J∗

j−1→N and to solve the dynamic program.
Let us assume that at time j−1 the cost-to-go J∗

j→N is known and discuss how
to construct an approximation of J∗

j−1→N . With J∗
j→N known, for a fixed xj−1

the optimization problem (7.14) becomes a standard nonlinear programming
problem. Thus, we can define a grid in the set Xj−1→N of the state space
and compute the optimal cost-to-go function on each grid point. We can then
define an approximate value function J̃∗

j−1→N (xj−1) at intermediate points
via interpolation. The complexity of constructing the cost-to-go function in
this manner increases rapidly with the dimension of the state space (“curse
of dimensionality”).

The extra benefit of solving the optimal control problem via dynamic
programming is that we do not only obtain the vector of optimal inputs
U∗

0→N for a particular initial state x(0) as with the batch approach. At each
time j the optimal cost-to-go function defines implicitly a nonlinear feedback
control law.

u∗
j (xj) = arg min

uj

q(xj , uj) + J∗
j+1→N (g(xj , uj))

subj. to h(xj , uj) ≤ 0,
g(xj , uj) ∈ Xj+1→N

(7.18)
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For a fixed xj this nonlinear programming problem can be solved quite easily
in order to find u∗

j(xj). Because the optimal cost-to-go function J∗
j→N (xj)

changes with time j, the nonlinear feedback control law is time-varying.

7.4 Optimal Control Problem with Infinite Horizon

We are interested in the optimal control problem (7.3)–(7.5) as the horizon
N approaches infinity.

J∗
0→∞(x0) = minu0,u1,...

∞∑

k=0

q(xk, uk)

subj. to xk+1 = g(xk, uk), k = 0, . . . ,∞
h(xk, uk) ≤ 0, k = 0, . . . ,∞
x0 = x(0)

(7.19)

We define the set of initial conditions for which this problem has a solution.

X0→∞ = {x(0) ∈ Rn : Problem (7.19) is feasible and J∗
0→∞(x(0)) < +∞}.

(7.20)
For the value function J∗

0→∞(x0) to be finite it must hold that

lim
k→∞

q(xk, uk) = 0

and because q(xk, uk) > 0 for all (xk, uk) 6= 0

lim
k→∞

xk = 0

and
lim

k→∞
uk = 0.

Thus the sequence of control actions generated by the solution of the infinite
horizon problem drives the system to the origin. For this solution to exists
the system must be - loosely speaking - stabilizable.

Using the recursive dynamic programming approach we can seek the so-
lution of the infinite horizon optimal control problem by increasing N until
we observe convergence. If the dynamic programming algorithm converges as
N →∞ then (7.14) becomes the Bellman equation

J∗(x) = minu q(x, u) + J∗(g(x, u))
subj. to h(x, u) ≤ 0

g(x, u) ∈ X0→∞

(7.21)

This procedure of simply increasing N may not be well behaved numer-
ically and it may also be difficult to define a convergence criterion that is
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meaningful for the control problem. We will describe a method, called Value
Function Iteration, in the next section.

An alternative is receding horizon control which can yield a time invariant
controller guaranteeing convergence to the origin without requiring N →∞.
We will describe this important idea later in this chapter.

7.4.1 Value Function Iteration

Once the value function J∗(x) is known, the nonlinear feedback control law
u∗(x) is defined implicitly by (7.21)

u∗(x) = arg minu q(x, u) + J∗(g(x, u))
subj. to h(x, u) ≤ 0

g(x, u) ∈ X0→∞

(7.22)

It is time invariant and guarantees convergence to the origin for all states in
X0→∞. For a given x ∈ X0→∞, u∗(x) can be found from (7.21) by solving a
standard nonlinear programming problem.

In order to find the value function J∗(x) we do not need to compute the
sequence of cost-to-go functions implied by the dynamic program (7.14) but
we can solve (7.21) directly. We can start with some initial guess J̃∗

0 (x) for
the value function and an initial guess X̃0 for the region in the state space
where we expect the infinite horizon problem to converge and iterate

J̃∗
i+1(x) = minu q(x, u) + J̃∗

i (g(x, u))
subj. to h(x, u) ≤ 0

g(x, u) ∈ X̃i

(7.23)

X̃i+1 = {x ∈ Rn : ∃u (h(x, u) ≤ 0, and g(x, u) ∈ X̃i )} (7.24)

Note that here i is the iteration index and does not denote time. This itera-
tive procedure is called value function iteration. It can be executed as follows.
Let us assume that at iteration step i we gridded the set X̃i and that J̃∗

i (x) is
known at each grind point from the previous iteration. We can approximate
J̃∗

i (x) at intermediate points via interpolation. For a fixed point x̄ the opti-
mization problem (7.23) is a nonlinear programming problem yielding J̃∗

i (x̄).
In this manner the approximate value function J̃∗

i (x) can be constructed at
all grid points and we can proceed to the next iteration step i + 1.
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7.4.2 Receding Horizon Control

Receding Horizon Control will be covered in detail in Chapter 11. Here we
illustrate the main idea and discuss the fundamental properties.

Assume that at time t = 0 we determine the control action u0 by solving
the finite horizon optimal control problem (7.3)-(7.5). If J∗

0→N (x0) converges
to J∗

0→∞(x0) as N → ∞ then the effect of increasing N on the value of u0

should diminish as N →∞. Thus, intuitively, instead of making the horizon
infinite we can get a similar behavior when we use a long, but finite horizon N,
and repeat this optimization at each time step, in effect moving the horizon
forward (moving horizon or receding horizon control).

In the batch approach we would solve an optimal control problem with
horizon N yielding a sequence of optimal inputs u∗

0, . . . , u
∗
N−1, but we would

implement only the first one of these inputs u∗
0. At the next time step we

would measure the current state and then again solve the N -step problem
with the current state as new initial condition x0. If the horizon N is long
enough then we expect that this approximation of the infinite horizon prob-
lem should not matter and the implemented sequence should drive the states
to the origin.

In the dynamic programming approach we would always implement the
control u0 obtained from the optimization problem

J∗
0→N (x0) = min

u0

q(x0, u0) + J∗
1→N (g(x0, u0))

subj. to h(x0, u0) ≤ 0,
g(x0, u0) ∈ X1→N ,
x0 = x(0)

(7.25)

where J∗
1→N (g(x0, u0)) is the optimal cost-to-go from the state x1 = g(x0, u0)

at time 1 to the end of the horizon N .
If the dynamic programming iterations converge as N → ∞, then for a

long, but finite horizon N we expect that this receding horizon approximation
of the infinite horizon problem should not matter and the resulting controller
will drive the system asymptotically to the origin.

In both the batch and the recursive approach, however, it is not obvious
how long N must be for the receding horizon controller to inherit these de-
sirable convergence characteristics. Indeed, for computational simplicity we
would like to keep N small. We will argue next that the proposed control
scheme guarantees convergence just like the infinite horizon variety if we im-
pose a specific terminal constraint, for example, if we require the terminal
region to be the origin Xf = 0.

From the principle of optimality we know that

J∗
0→N (x0) = min

u0

q(x0, u0) + J∗
1→N (x1). (7.26)
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Assume that we are at x(0) at time 0 and implement the optimal u∗
0 that takes

us to the next state x1 = g(x(0), u∗
0). At this state at time 1 we postulate to

use over the next N steps the sequence of optimal moves determined at the
previous step followed by zero: u∗

1, . . . , u
∗
N−1, 0. This sequence is not optimal

but the associated cost over the shifted horizon from 1 to N +1 can be easily
determined. It consists of three parts: 1) the optimal cost J∗

0→N (x0) from
time 0 to N computed at time 0, minus 2) the stage cost q(x0, u0) at time 0
plus 3) the cost at time N + 1. But this last cost is zero because we imposed
the terminal constraint xN = 0 and assumed uN = 0. Thus the cost over the
shifted horizon for the assumed sequence of control moves is

J∗
0→N (x0)− q(x0, u0).

Because this postulated sequence of inputs is not optimal at time 1

J∗
1→N+1(x1) ≤ J∗

0→N (x0)− q(x0, u0).

Because the system and the objective are time invariant J∗
1→N+1(x1) =

J∗
0→N (x1) so that

J∗
0→N (x1) ≤ J∗

0→N (x0)− q(x0, u0).

As q ≻ 0 for all (x, u) 6= (0, 0), the sequence of optimal costs J∗
0→N (x0), J

∗
0→N (x1), . . .

is strictly decreasing for all (x, u) 6= (0, 0). Because the cost J∗
0→N ≥ 0 the

sequence J∗
0→N (x0), J

∗
0→N (x1), . . . (and thus the sequence x0, x1,. . .) is con-

verging. Thus we have established the following important theorem.

Theorem 7.1. At time step j consider the cost function

Jj→j+N (xj , uj, uj+1, . . . , uj+N−1) ,

j+N∑

k=j

q(xk, uk), q ≻ 0 (7.27)

and the CFTOC problem

J∗
j→j+N (xj) , minuj ,uj+1,...,uj+N−1 Jj→j+N (xj , uj, uj+1, . . . , uj+N−1)

subj. to xk+1 = g(xk, uk)
h(xk, uk) ≤ 0, k = j, . . . , j + N − 1
xN = 0

(7.28)
Assume that only the optimal u∗

j is implemented. At the next time step j + 1
the CFTOC problem is solved again starting from the resulting state xj+1 =
g(xj , u

∗
j ) (Receding Horizon Control). Assume that the CFTOC problem has

a solution for every one of the sequence of states xj , xj+1, . . . resulting from
the control policy. Then the system will converge to the origin as j →∞.

Thus we have established that a receding horizon controller with terminal
constraint xN = 0 has the same desirable convergence characteristics as the
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infinite horizon controller. At first sight the theorem appears very general
and powerful. It is based on the implicit assumption, however, that at every
time step the CFTOC problem has a solution. Infeasibility would occur, for
example, if the underlying system is not stabilizable. It could also happen
that the constraints on the inputs which restrict the control action prevent
the system from reaching the terminal state in N steps. In Chapter 11 we
will present special formulations of problem (7.28) such that feasibility at
the initial time guarantees feasibility for all future times. Furthermore in
addition to asymptotic convergence to the origin we will establish stability
for the closed-loop system with the receding horizon controller.

Remark 7.1. For the sake of simplicity in the rest of the book we will use the
following shorter notation

J∗
j (xj) , J∗

j→N (xj), j = 0, . . . , N

J∗
∞(x0) , J∗

0→∞(x0)

Xj , Xj→N , j = 0, . . . , N

X∞ , X0→∞
U0 , U0→N

(7.29)

and use the original notation only if needed.

7.5 Lyapunov Stability

While asymptotic convergence limk→∞ xk = 0 is a desirable property, it is
generally not sufficient in practice. We would also like a system to stay in a
small neighborhood of the origin when it is disturbed by a little. Formally
this is expressed as Lyapunov stability.

7.5.1 General Stability Conditions

Consider the autonomous system

xk+1 = f(xk) (7.30)

with f(0) = 0.

Definition 7.1 (Lyapunov Stability). The equilibrium point x = 0 of
system (7.30) is

- stable (in the sense of Lyapunov) if, for each ε > 0, there is δ > 0 such
that

‖x0‖ < δ ⇒ ‖xk‖ < ε, ∀k ≥ 0 (7.31)
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- unstable if not stable
- asymptotically stable in Ω ⊆ Rn if it is stable and

lim
k→∞

xk = 0, ∀x0 ∈ Ω (7.32)

- globally asymptotically stable if it is asymptotically stable and Ω = Rn

- exponentially stable if it is stable and there exist constants α > 0 and
γ ∈ (0, 1) such that

‖x0‖ < δ ⇒ ‖xk‖ ≤ α‖x0‖γk, ∀k ≥ 0 (7.33)

The ε-δ requirement for stability (7.31) takes a challenge-answer form. To
demonstrate that the origin is stable, for any value of ε that a challenger may
chose (however small), we must produce a value of δ such that a trajectory
starting in a δ neighborhood of the origin will never leave the ε neighborhood
of the origin.

Remark 7.2. If in place of system (7.30), we consider the time-varying system
xk+1 = f(xk, k), then δ in Definition 7.1 is a function of ε and k, i.e., δ =
δ(ε, k) > 0. In this case, we introduce the concept of “uniform stability”.
The equilibrium point x = 0 is uniformly stable if, for each ε > 0, there is
δ = δ(ε) > 0 (independent from k) such that

‖x0‖ < δ ⇒ ‖xk‖ < ε, ∀k ≥ 0 (7.34)

The following example shows that Lyapunov stability and convergence are,
in general, different properties.

Example 7.1. Consider the following system with two states x = [x(1), x(2)]′ ∈
R2:

xk+1(1) = xk(1) e−xk(1)/xk(2)

‖xk‖∞

xk+1(2) = xk(1)
(7.35)

consider in a neighborhood of the origin Ia = {x ∈ R2 : x(2) = 0, x(1) ∈
(0, a), a > 0}. No matter how small we choose a, for all x0 ∈ Ia − 0 the first
component of the state at time 1, x1(1), will always be equal to the number

e. In fact x1(2) = x0(1) and thus x1(1) = x0(1) e−x0(1)/x0(1)

x0(1)
= e. However it

can be proven that the system converges to the origin for all x0 ∈ Ia.

Usually to show Lyapunov stability of the origin for a particular system
one constructs a so called Lyapunov function, i.e., a function satisfying the
conditions of the following theorem.

Theorem 7.2. Consider the equilibrium point x = 0 of system (7.30). Let
Ω ⊂ Rn be a closed and bounded set containing the origin. Let V : Rn → R
be a function, continuous at the origin, such that

V (0) = 0 and V (x) > 0, ∀x ∈ Ω \ {0} (7.36a)

V (xk+1)− V (xk) < 0 ∀xk ∈ Ω \ {0} (7.36b)
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then x = 0 is asymptotically stable in Ω.

Definition 7.2. A function V (x) satisfying conditions (7.36a)-(7.36b) is
called a Lyapunov Function.

The main idea of Theorem 7.2 can be explained as follows. We aim at finding
a scalar function V (x) that captures qualitative characteristics of the system
response, and, in particular, its stability. We can think of V as an energy
function that is zero at the origin and positive elsewhere (condition (7.36a)).
Condition (7.36b) of Theorem 7.2 requires that for any state xk ∈ Ω, xk 6= 0
the energy decreases as the system evolves to xk+1.

Theorem 7.2 states that if we find an energy function which satisfies the
two conditions (7.36a)-(7.36b), then the system states starting from any ini-
tial state x0 ∈ Ω will eventually settle to the origin.

Note that Theorem 7.2 is only sufficient. If condition (7.36b) is not satisfied
for a particular choice of V nothing can be said about stability of the origin.
Condition (7.36b) of Theorem 7.2 can be relaxed as follows:

V (xk+1)− V (xk) ≤ 0, ∀xk 6= 0 (7.37)

Condition (7.37) along with condition (7.36a) are sufficient to guarantee sta-
bility of the origin as long as the set {xk : V (f(xk))−V (xk) = 0} contains no
trajectory of the system xk+1 = f(xk) except for xk = 0 for all k ≥ 0. This
relaxation of Theorem 7.2 is the so called the Barbashin-Krasovski-LaSalle
principle. It basically means that V (xk) may stay constant and non zero at
one or more time instants as long as it does not do so at an equilibrium point
or periodic orbit of the system.

A similar result as Theorem 7.2 can be derived for global asymptotic sta-
bility, i.e., Ω = Rn.

Theorem 7.3. Consider the equilibrium point x = 0 of system (7.30). Let
V : Rn → R be a function, continuous at the origin, such that

‖x‖ → ∞⇒ V (x)→∞ (7.38a)

V (0) = 0 and V (x) > 0, ∀x 6= 0 (7.38b)

V (xk+1)− V (xk) < 0 ∀xk 6= 0 (7.38c)

then x = 0 is globally asymptotically stable.

Definition 7.3. A function V (x) satisfying condition (7.38a) is said to be
radially unbounded.

Definition 7.4. A radially unbounded Lyapunov function is called a Global
Lyapunov Function.

Note that it was not enough just to restate Theorem 7.2 with Ω = Rn

but we also have to require V (x) to be radially unbounded to guarantee
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global asymptotic stability. To motivate this condition consider the candidate
Lyapunov function for a system in R2[160]

V (x) =
x(1)2

1 + x(1)2
+ x(2)2 (7.39)

where x(1) and x(2) denote the first and second components of the state
vector x, respectively. V (x) in (7.39) is not radially unbounded as for x(2) = 0

lim
xk(1)→∞

V (x) = 1

For this Lyapunov function even if condition (7.38c) is satisfied, the state x
may escape to infinity. Condition (7.38c) of Theorem 7.3 guarantees that the
level sets Ωc of V (x) (Ωc = {x ∈ Rn : V (x) ≤ c}) are closed.

The construction of suitable Lyapunov functions is a challenge except for
linear systems. First of all one can quite easily show that for linear systems
Lyapunov stability agrees with the notion of stability based on eigenvalue
location.

Theorem 7.4. A linear system xk+1 = Axk is globally asymptotically stable
in the sense of Lyapunov if and only if all its eigenvalues are inside the unit
circle.

We also note that stability is always “global” for linear systems.

7.5.2 Quadratic Lyapunov Functions for Linear Systems

A simple effective Lyapunov function for linear systems is

V (x) = x′Px, P ≻ 0 (7.40)

which satisfies conditions (7.38a)-(7.36a) of Theorem 7.2. In order to test
condition (7.36b) we compute

V (xk+1)−V (xk) = x′
k+1Pxk+1−x′

kPxk = x′
kA′PAxk−x′

kPxk = x′
k(A′PA−P )xk

(7.41)
Therefore condition (7.36b) is satisfied if P ≻ 0 can be found such that

A′PA− P = −Q, Q ≻ 0 (7.42)

Equation (7.42) is referred to as discrete-time Lyapunov equation. The fol-
lowing Theorem shows that P satisfying (7.42) exists if and only if the linear
system is asymptotically stable.
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Theorem 7.5. Consider the linear system xk+1 = Axk. Equation (7.42) has
a unique solution P ≻ 0 for any Q ≻ 0 if and only if A has all eigenvalues
inside the unit circle.

Thus, a quadratic form x′Px is always a suitable Lyapunov function for linear
systems and an appropriate P can be found by solving (7.42) for a chosen Q ≻
0 if the system’s eigenvalues lie inside the unit circle. For nonlinear systems,
determining a suitable form for V (x) is generally difficult. The conditions of
Theorem 7.5 can be relaxed as follows.

Theorem 7.6. Consider the linear system xk+1 = Axk. Equation (7.42) has
a unique solution P ≻ 0 for any Q = C′C � 0 if and only if A has all
eigenvalues inside the unit circle and (C, A) is observable.

It may be surprising that in order to prove stability in Theorem 7.6 we do
not require that the Lyapunov function decreases at every time step, i.e.
that Q is allowed to be positive semidefinite. To understand this, let us
assume that for a particular system state x̄, V does not decrease, i.e. x̄′Qx̄ =
(Cx̄)′(Cx̄) = 0. Then at the next time steps we have the rate of decrease
(CAx̄)′(CAx̄), (CA2x̄)′(CA2x̄), . . .. If the system (C, A) is observable then
for all x̄ 6= 0

x̄′ [C (CA)′ (CA2)′ · · · (CAn−1)′
]
6= 0 (7.43)

which implies that after at most (n − 1) steps the rate of decrease will be-
come nonzero. This is a special case of the the Barbashin-Krasovski-LaSalle
principle.

Note that from (7.42) it follows that for stable systems and for a chosen
Q ≻ 0 one can always find P̃ ≻ 0 solving

A′P̃A− P̃ + Q � 0 (7.44)

This Lyapunov inequality shows that for a stable system we can always find
a P̃ such that V (x) = x′P̃ x decreases at a desires “rate” indicated by Q.
We will need this result later to prove stability of receding horizon control
schemes.

7.5.3 1/∞ Norm Lyapunov Functions for Linear Systems

For p = {1,∞} the function

V (x) = ‖Px‖p

with P ∈ Rl×n of full column rank satisfies the requirements (7.38a), (7.38b)
of a Lyapunov function. It can be shown that a matrix P can be found such
that condition (7.38c) is satisfied for the system xk+1 = Axk if and only if
the eigenvalues of A are inside the unit circle. The number of rows l necessary



142 7 General Formulation and Discussion

in P depends on the system. The techniques to construct P are based on the
following theorem [161, 213].

Theorem 7.7. Let P ∈ Rl×n with rank(P ) = n and p ∈ {1, ∞}. The func-
tion

V (x) = ‖Px‖p (7.45)

is a Lyapunov function for the discrete-time system

xk+1 = Axk, k ≥ 0, (7.46)

if and only if there exists a matrix H ∈ Rl×l, such that

PA = HP, (7.47a)

‖H‖p < 1. (7.47b)

An effective method to find both H and P was proposed by Christophersen
in [82].

To prove the stability of receding horizon control, later in this book, we
will need to find a P̃ such that

− ‖P̃ x‖∞ + ‖P̃Ax‖∞ + ‖Qx‖∞ ≤ 0, ∀x ∈ Rn. (7.48)

Once we have constructed a P and H to fulfill the conditions of Theorem 7.7
we can easily find P̃ to satisfy (7.48) according to the following proposition:

Proposition 7.1. Let P and H be matrices satisfying conditions (7.47),
with P full column rank. Let σ , 1 − ‖H‖∞, ρ , ‖QP#‖∞, where
P# , (PT P )−1PT is the left pseudoinverse of P . Then, the square matrix

P̃ =
ρ

σ
P (7.49)

satisfies condition (7.48).

Proof: Since P̃ satisfies P̃A = HP̃ , we obtain −‖P̃x‖∞ + ‖P̃Ax‖∞ +
‖Qx‖∞ = −‖P̃x‖∞ + ‖HP̃x‖∞ + ‖Qx‖∞ ≤ (‖H‖∞− 1)‖P̃x‖∞ + ‖Qx‖∞ ≤
(‖H‖∞ − 1)‖P̃x‖∞ + ‖QP#‖∞‖Px‖∞ = 0. Therefore, (7.48) is satisfied. 2

Note that the inequality (7.48) is equivalent to the Lyapunov inequal-
ity (7.44) when p = 1 or p =∞.



Chapter 8

Linear Quadratic Optimal Control

We consider a special case of the problem stated in the last chapter, where
the system is linear and time-invariant

x(t + 1) = Ax(t) + Bu(t) (8.1)

Again, x(t) ∈ Rn and u(t) ∈ Rm are the state and input vectors respectively.
We define the following quadratic cost function over a finite horizon of N

steps

J0(x0, U0) , x′
NPxN +

N−1∑

k=0

x′
kQxk + u′

kRuk (8.2)

where xk denotes the state vector at time k obtained by starting from the
state x0 = x(0) and applying to the system model

xk+1 = Axk + Buk (8.3)

the input sequence U0 , [u′
0, . . . , u

′
N−1]

′. Consider the finite time optimal
control problem

J∗
0 (x(0)) = minU0 J0(x(0), U0)

subj. to xk+1 = Axk + Buk, k = 0, 1, . . . , N − 1
x0 = x(0).

(8.4)

In (8.4) U0 = [u′
0, . . . , u

′
N−1]

′ ∈ Rs, s , mN is the decision vector containing
all future inputs. We will assume that the state penalty is positive semi-
definite Q = Q′ � 0, P = P ′ � 0 and the input penalty is positive definite
R = R′ ≻ 0.

As introduced in the previous chapter we will present two alternate ap-
proaches to solve problem (8.4), the batch approach and the recursive ap-
proach using dynamic programming.

143
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8.1 Solution via Batch Approach

First we write the equality constraints in (8.4) explicitly to express all future
states x1, x2, . . . as a function of the future inputs u0, u1, . . . and then we
eliminate all intermediate states by successive substitution to obtain




x(0)
x1

...

...
xN




︸ ︷︷ ︸
X

=




I
A
...
...

AN




︸ ︷︷ ︸
Sx

x(0) +




0 . . . . . . 0
B 0 . . . 0

AB
. . .

. . .
...

...
. . .

. . .
...

AN−1B . . . . . . B




︸ ︷︷ ︸
Su




u0

...

...
uN−1




. (8.5)

Here all future states are explicit functions of the present state x(0) and the
future inputs u0, u1, u2, . . . only. By defining the appropriate quantities we
can rewrite this expression compactly as

X = Sxx(0) + SuU0 (8.6)

Using the same notation the objective function can be rewritten as

J(x(0), U0) = X ′Q̄X + U0
′R̄U0 (8.7)

where Q̄ = blockdiag{Q, · · · , Q, P}, Q̄ � 0, and R̄ = blockdiag{R, · · · , R}, R̄ ≻
0. Substituting (8.6) into the objective function (8.7) yields

J0(x(0), U0) = (Sxx(0) + SuU0)
′
Q̄ (Sxx(0) + SuU0) + U0

′R̄U0

= U0
′ (Su′Q̄Su + R̄)︸ ︷︷ ︸

H

U0 + 2x′(0) (Sx′Q̄Su)︸ ︷︷ ︸
F

U0 + x′(0) (Sx′Q̄Sx)︸ ︷︷ ︸
Y

x(0)

= U0
′HU0 + 2x′(0)FU0 + x′(0)Y x(0)

(8.8)
Because R̄ ≻ 0, also H ≻ 0. Thus J0(x(0), U0) is a positive definite quadratic
function of U0. Therefore, its minimum can be found by computing its gra-
dient and setting it to zero. This yields the optimal vector of future inputs

U∗
0 (x(0)) = −H−1F ′x(0)

= −
(
Su′Q̄Su + R̄

)−1 Su′Q̄Sxx(0)
(8.9)

With this choice of U0 the optimal cost is

J∗
0 (x(0)) = −x(0)′FH−1F ′x(0) + x(0)′Y x(0)

= x(0)′
[
Sx′Q̄Sx − Sx′Q̄Su

(
Su′Q̄Su + R̄

)−1 Su′Q̄Sx
]
x(0)

(8.10)
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Note that the optimal vector of future inputs U∗
0 (x(0)) is a linear function

(8.9) of the initial state x(0) and the optimal cost J∗
0 (x(0)) is a quadratic

function (8.10) of the initial state x(0).

8.2 Solution via Recursive Approach

Alternatively, we can use dynamic programming to solve the same problem
in a recursive manner. We define the optimal cost J∗

j (xj) for the N − j step
problem starting from state xj by

J∗
j (xj)

∆
= min

uj ,··· ,uN−1

x′
NPxN +

N−1∑

k=j

x′
kQxk + u′

kRuk

According to the principle of optimality the optimal one step cost-to-go can
be obtained from

J∗
N−1(xN−1) = min

uN−1

x′
NPNxN + x′

N−1QxN−1 + u′
N−1RuN−1 (8.11)

xN = AxN−1 + BuN−1

PN = P
(8.12)

Here we have introduced the notation Pj to express the optimal cost-to-go
xj

′Pjxj from time j to the end of the horizon N . Specifically if j = N this is
simply P . Substituting (8.12) into the objective function (8.11),

J∗
N−1(xN−1) = minuN−1

{
x′

N−1(A
′PNA + Q)xN−1

+2x′
N−1A

′PNBuN−1

+u′
N−1(B

′PNB + R)uN−1

}
.

(8.13)

We note that the cost-to-go JN−1(xN−1) is a positive definite quadratic func-
tion of the decision variable uN−1. We find the optimum by setting the gra-
dient to zero and obtain the optimal input

u∗
N−1 = −(B′PNB + R)−1B′PNA︸ ︷︷ ︸

FN−1

xN−1 (8.14)

and the one-step optimal cost-to-go

J∗
N−1(xN−1) = x′

N−1PN−1xN−1, (8.15)

where we have defined

PN−1 = A′PNA + Q−A′PNB(B′PNB + R)−1B′PNA (8.16)
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At the next stage, consider the two-step problem from time N − 2 forward:

J∗
N−2(xN−2) = min

uN−2

x′
N−1PN−1xN−1 + x′

N−2QxN−2 + u′
N−2RuN−2 (8.17)

xN−1 = AxN−2 + BuN−2 (8.18)

We recognize that (8.17), (8.18) has the same form as (8.11), (8.12). Therefore
we can state the optimal solution directly.

u∗
N−2 = −(B′PN−1B + R)−1B′PN−1A︸ ︷︷ ︸

FN−2

xN−2 (8.19)

The optimal two-step cost-to-go is

J∗
N−2(xN−2) = x′

N−2PN−2xN−2, (8.20)

where we defined

PN−2 = A′PN−1A + Q−A′PN−1B(B′PN−1B + R)−1B′PN−1A (8.21)

Continuing in this manner, at some arbitrary time k the optimal control
action is

u∗(k) = −(B′Pk+1B + R)−1B′Pk+1Ax(k),
= Fkx(k), for k = 0, . . . , N − 1,

(8.22)

where

Pk = A′Pk+1A + Q−A′Pk+1B(B′Pk+1B + R)−1B′Pk+1A (8.23)

and the optimal cost-to-go starting from the measured state x(k) is

J∗
k (x(k)) = x′(k)Pkx(k) (8.24)

Equation (8.23) (called Discrete Time Riccati Equation or Riccati Difference
Equation - RDE) is initialized with PN = P and is solved backwards, i.e.,
starting with PN and solving for PN−1, etc. Note from (8.22) that the optimal
control action u∗(k) is obtained in the form of a feedback law as a linear
function of the measured state x(k) at time k. The optimal cost-to-go (8.24)
is found to be a quadratic function of the state at time k.

Remark 8.1. According to Section 7.4.2, the receding horizon control policy
consists in solving problem (8.4) at each time step t with x0 = x(t). Consider
the state-feedback solution u∗(k) in (8.22) to problem (8.4). Then, the RHC
policy is:

u∗(t) = F0x(t), t ≥ 0 (8.25)
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8.3 Comparison Of The Two Approaches

We will compare the batch and the recursive dynamic programming approach
in terms of the results and the methods used to obtain the results.

Most importantly we observe that the results obtained by the two methods
are fundamentally different. The batch approach yields a formula for the
sequence of inputs as a function of the initial state.

U∗
0 = −

(
Su′Q̄Su + R̄

)−1 Su′Q̄Sxx(0) (8.26)

The recursive dynamic programming approach yields a feedback policy, i.e.,
a sequence of feedback laws expressing at each time step the control action as
a function of the state at that time.

u∗(k) = Fkx(k), for k = 0, . . . , N − 1 (8.27)

As this expression implies, we determine u(k) at each time k as a function of
the current state x(k) rather than use a u(k) precomputed at k = 0 as in the
batch method. If the state evolves exactly according to the linear model (8.3)
then the sequence of control actions u(k) obtained from the two approaches
is identical. In practice, the result of applying the sequence (8.26) in an open-
loop fashion may be rather different from applying the time-varying feedback
law (8.27) because the model (8.1) for predicting the system states may be
inaccurate and the system may be subject to disturbances not included in
the model. We expect the application of the feedback law to be more robust
because at each time step the observed state x(k) is used to determine the
control action rather than the state xk predicted at time t = 0.

We note that we can get the same feedback effect with the batch approach
if we recalculate the optimal open-loop sequence at each time step j with the
current measurement as initial condition. In this case we need to solve the
following optimization problem

J∗
j (x(j)) = minuj ,··· ,uN−1 x′

NPxN +
∑N−1

k=j x′
kQxk + u′

kRuk

subj. to xj = x(j)
(8.28)

where we note that the horizon length is shrinking at each time step.
As seen from (8.26) the solution to (8.28) relates the sequence of inputs

u∗
j , u

∗
j+1, . . . to the state x(j) through a linear expression. The first part of

this expression yields again the optimal feedback law (8.27) at time j, u∗(j) =
Fjx(j).

Here the dynamic programming approach is clearly a more efficient way
to generate the feedback policy because it only uses a simple matrix recur-
sion (8.23). Repeated application of the batch approach, on the other hand,
requires repeatedly the inversion of a potentially large matrix in (8.26). For
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such inversion, however, one can take advantage of the fact that only a small
part of the matrix H changes at every time step.

What makes dynamic programming so effective here is that in this special
case, where the system is linear and the objective is quadratic, the optimal
cost-to-go, the value function J∗

j (x(j)) has a very simple form: it is quadratic.
If we make the problem only slightly more complicated, e.g., if we add con-
straints on the inputs or states, the value function can still be constructed,
but it is much more complex. In general, the value function can only be ap-
proximated as discussed in the previous chapter. Then a repeated application
of the batch policy, where we resolve the optimization problem at each time
step is an attractive alternative.

8.4 Infinite Horizon Problem

For continuous processes operating over a long time period it would be in-
teresting to solve the following infinite horizon problem.

J∗
∞(x(0)) = min

u0,u1,...

∞∑

k=0

x′
kQxk + u′

kRuk (8.29)

Since the prediction must be carried out to infinity, application of the batch
method becomes impossible. On the other hand, derivation of the optimal
feedback law via dynamic programming remains viable. We can initialize the
RDE (8.23)

Pk = A′Pk+1A + Q−A′Pk+1B(B′Pk+1B + R)−1B′Pk+1A (8.30)

with the terminal cost matrix P0 = Q and solve it backwards for k → −∞.
Let us assume for the moment that the iterations converge to a solution P∞.
Such P∞ would then satisfy the Algebraic Riccati Equation (ARE)

P∞ = A′P∞A + Q−A′P∞B(B′P∞B + R)−1B′P∞A. (8.31)

Then the optimal feedback control law is

u∗(k) = −(B′P∞B + R)−1B′P∞A︸ ︷︷ ︸
F∞

x(k), k = 0, · · · ,∞ (8.32)

and the optimal infinite horizon cost is

J∗
∞(x(0)) = x(0)′P∞x(0). (8.33)

Controller (8.32) is referred to as the asymptotic form of the Linear Quadratic
Regulator (LQR) or the ∞-horizon LQR.
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Convergence of the RDE has been studied extensively. A nice summary of
the various results can be found in Appendix E of the book by Goodwin and
Sin [120] and on page 53 of the book by Anderson and Moore [8]. Intuitively
we expect that the system (8.3) must be controllable so that all states can be
affected by the control and that the cost function should capture the behavior
of all the states, e.g. that Q ≻ 0. These conditions are indeed sufficient for
the RDE to converge and to yield a stabilizing feedback control law. Less
restrictive conditions are presented in the following theorem.

Theorem 8.1. [173][Theorem 2.4-2] If (A, B) is a stabilizable pair and
(Q1/2, A) is an observable pair, the controller Riccati difference equation
(8.30) with P0 � 0 converges to a unique positive definite solution P∞ of
the ARE (8.31) and all the eigenvalues of (A+BF∞) lie inside the unit disk.

The first condition is clearly necessary for J∗
∞ (and P∞) to be finite. To

understand the second condition, we write the state dependent term in the
objective function as x′Qx = (x′Q1/2)(Q1/2x). Thus not the state but the
“output” (Q1/2x) is penalized in the objective. Therefore the second condition
((Q1/2, A) observable) requires that this output captures all system modes.
In this manner convergence of the output (Q1/2x) implies convergence of the
state to zero. This is trivial if Q is nonsingular. For the singular case this is
proven in the next section.

Note also that the assumption on the observability of (Q1/2, A) in The-
orem 8.1 can be relaxed. For convergence, it is enough to require that the
output (Q1/2x) captures all system unstable modes and thus (Q1/2, A) to be
detectable.

8.5 Stability of the Infinite Horizon LQR

Consider the linear system (8.1) and the ∞-horizon LQR solution (8.31)-
(8.32). We prove that the closed-loop system

x(t + 1) = (A + BF∞)x(t) (8.34)

is asymptotically stable for any F∞ by showing that the ∞-horizon cost

J∗
∞(x) = x′P∞x (8.35)

is a Lyapunov function (and thus proving the last part of Theorem 8.1).
Let Q = C′C and R = D′D with det(D) 6= 0. The proof consists

of two main steps: (i) prove that if (C, A) is an observable pair then([
C

DF∞

]
, [A−BF∞]

)
is also observable, (ii) prove that the ARE equa-

tion (8.31) can be rewritten as
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P∞ = (A−BF∞)′P∞(A−BF∞) +

[
C

DF∞

]′ [
C

DF∞

]
. (8.36)

Once (i) and (ii) are proven, the final result is immediate. In fact, equa-
tion (8.36) is a Lyapunov equation for (A − BF∞). Since P∞ ≻ 0 and([

C
DF∞

]
, [A−BF∞]

)
is observable we can use Theorem 7.6 and claim

the asymptotic stability of the closed-loop system A−BF∞ for any F∞.
Proof of (i). Since det(D) 6= 0 then B = MD for some M . We have

rank




zI −A
C

DF∞


 = rank




I 0 M
0 I 0
0 0 I






zI −A
C

DF∞


 = rank




zI − (A−BF∞)
C

DF∞


 .

(8.37)
Since (C, A) is observable, by the Hautus condition

rank

[
zI −A

C

]
= n for every z (8.38)

and therefore by (8.37),

([
C

DF∞

]
, [A−BF∞]

)
is observable for any F∞.

Proof of (ii). From (8.36)

P∞ = A′P∞A− F ′
∞B′P∞A−A′P∞BF∞ + F ′

∞B′P∞BF∞ + Q + F∞RF∞
= A′P∞A− F ′

∞B′P∞A−A′P∞BF∞ + F ′
∞(B′P∞B + R)F∞ + Q

(8.39)
From the definition of F∞ in (8.32), and the previous equation we have

P∞ = A′P∞A−A′P∞B(B′P∞B + R)−1B′P∞A−A′P∞B(B′P∞B + R)−1B′P∞A
+A′P∞B(B′P∞B + R)−1B′P∞A + Q

(8.40)
which is equal to

P∞ = A′P∞A−A′P∞B(B′P∞B + R)−1B′P∞A + Q (8.41)

which is the ARE equation (8.31).



Chapter 9

1/∞ Norm Optimal Control

We consider a special case of the problem stated in Chapter 7, where the
system is linear and time-invariant

x(t + 1) = Ax(t) + Bu(t) (9.1)

Again, x(t) ∈ Rn and u(t) ∈ Rm are the state and input vector respectively.
We define the following piecewise linear cost function over a finite horizon

of N steps

J0(x0, U0) , ‖PxN‖p +

N−1∑

k=0

‖Qxk‖p + ‖Ruk‖p (9.2)

with p = 1 or p =∞ and where xk denotes the state vector at time k obtained
by starting from the state x0 = x(0) and applying to the system model

xk+1 = Axk + Buk (9.3)

the input sequence U0 , [u′
0, . . . , u

′
N−1]

′. The weighting matrices in (9.2)
could have an arbitrary number of rows. For simplicity of notation we will
assume Q ∈ Rn×n, R ∈ Rm×m and P ∈ Rr×n. Consider the finite time
optimal control problem

J∗
0 (x(0)) = minU0 J0(x(0), U0)

subj. to xk+1 = Axk + Buk, k = 0, 1, . . . , N − 1
x0 = x(0).

(9.4)

In (9.4) U0 = [u′
0, . . . , u

′
N−1]

′ ∈ Rs, s , mN is the decision vector containing
all future inputs.

We will present two alternate approaches to solve problem (9.2)-(9.4),
the batch approach and the recursive approach using dynamic programming.
Unlike in the 2-norm case presented in the previous chapter, there does not
exist a simple closed-form solution of problem (9.2)-(9.4). In this chapter

151
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we will show how to use multiparametric linear programming to compute
the solution to problem (9.2)-(9.4). We will concentrate on the use of the
∞-norm, the results can be extended easily to cost functions based on the
1-norm or mixed 1/∞ norms.

9.1 Solution via Batch Approach

First we write the equality constraints in (9.4) explicitly to express all future
states x1, x2, . . . as a function of the future inputs u1, u2, . . . and then we
eliminate all intermediate states by using

xk = Akx0 +
∑k−1

j=0 AjBuk−1−j (9.5)

so that all future states are explicit functions of the present state x(0) and
the future inputs u0, u1, u2, . . . only.

The optimal control problem (9.4) with p =∞ can be rewritten as a linear
program by using the following standard approach (see e.g. [72]). The sum
of components of any vector {εx

0 , . . . , εx
N , εu

0 , . . . , εu
N−1} that satisfies

−1nεx
k ≤ Qxk, k = 0, 1, . . . , N − 1

−1nεx
k ≤ −Qxk, k = 0, 1, . . . , N − 1

−1rε
x
N ≤ PxN ,

−1rε
x
N ≤ −PxN ,

−1mεu
k ≤ Ruk, k = 0, 1, . . . , N − 1

−1mεu
k ≤ −Ruk, k = 0, 1, . . . , N − 1

(9.6)

forms an upper bound on J0(x(0), U0), where 1k , [1 . . . 1︸ ︷︷ ︸
k

]′, and the in-

equalities (9.6) hold componentwise. It is easy to prove that the vector
z0 , {εx

0 , . . . , εx
N , εu

0 , . . . , εu
N−1, u

′
0, . . . , u

′
N−1} ∈ Rs, s , (m + 1)N + N + 1,

that satisfies equations (9.6) and simultaneously minimizes J(z0) = εx
0 +

. . . + εx
N + εu

0 + . . . + εu
N−1 also solves the original problem (9.4), i.e., the

same optimum J∗
0 (x(0)) is achieved [267, 72]. Therefore, problem (9.4) can

be reformulated as the following LP problem
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min
z0

εx
0 + . . . + εx

N + εu
0 + . . . + εu

N−1 (9.7a)

subj. to −1nεx
k ≤ ±Q


Akx0 +

k−1∑

j=0

AjBuk−1−j


 , (9.7b)

−1rε
x
N ≤ ±P


ANx0 +

N−1∑

j=0

AjBuN−1−j


 , (9.7c)

−1mεu
k ≤ ±Ruk, (9.7d)

k = 0, . . . , N − 1

x0 = x(0) (9.7e)

where constraints (9.7b)–(9.7d) are componentwise, and ± means that the
constraint appears once with each sign, as in (9.6).

Remark 9.1. The cost function (9.2) with p = ∞ can be interpreted as a
special case of a cost function with 1-norm over time and∞-norm over space.
For instance, the dual choice (∞-norm over time and 1-norm over space) leads
to the following cost function

J0(x(0), U0) , max
k=0,...,N

{‖Qxk‖1 + ‖Ruk‖1}. (9.8)

We remark that any combination of 1- and ∞-norms leads to a linear pro-
gram. In general, ∞-norm over time could result in a poor closed-loop per-
formance (only the largest state deviation and the largest input would be
penalized over the prediction horizon), while 1-norm over space leads to an
LP with a larger number of variables.

The results of this chapter hold for any combination of 1- and ∞-norms
over time and space. Clearly the LP formulation will differ from the one
in (9.7). For instance, the 1−norm in space requires the introduction of nN
slack variables for the terms ‖Qxk‖1, εk,i ≥ ±Qixk k = 0, 2, . . . , N − 1, i =
1, 2, . . . , n, plus r slack variables for the terminal penalty ‖PxN‖1, εN,i ≥
±P ixN i = 1, 2, . . . , r, plus mN slack variables for the input terms ‖Ruk‖1,
εu

k,i ≥ ±Riuk k = 0, 1, . . . , N − 1, i = 1, 2, . . . , m. Here we have used the

notation M i to denote the i-th row of matrix M .

Problem (9.7) can be rewritten in the more compact form

min
z0

c′0z0

subj. to Gεz0 ≤Wε + Sεx(0)

(9.9)

where c0 ∈ Rs and Gε ∈ Rq×s, Sε ∈ Rq×n and Wε ∈ Rq are
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c0 = [

N+1︷ ︸︸ ︷
1 . . . 1

N︷ ︸︸ ︷
1 . . . 1

mN︷ ︸︸ ︷
0 . . . 0]′

Gǫ =




N+1︷ ︸︸ ︷
−1n 0 . . . 0
−1n 0 . . . 0

0 −1n . . . 0
0 −1n . . . 0

. . . . . . . . . . . .
0 . . . −1n 0
0 . . . −1n 0
0 . . . 0 −1r

0 . . . 0 −1r

0 0 . . . 0
0 0 . . . 0

. . . . . . . . . . . .
0 0 . . . 0
0 0 . . . 0

N︷ ︸︸ ︷
0 . . . 0
0 . . . 0
0 . . . 0
0 . . . 0

. . . . . . . . .
0 . . . 0
0 . . . 0
0 . . . 0
0 . . . 0
−1m . . . 0
−1m . . . 0
. . . . . . . . .
0 . . . −1m

0 . . . −1m

mN︷ ︸︸ ︷
0 0 . . . 0
0 0 . . . 0

QB 0 . . . 0
−QB 0 . . . 0
. . . . . . . . . . . .

QAN−2B QAN−3B . . . 0
−QAN−2B −QAN−3B . . . 0
PAN−1B PAN−2B . . . PB
−PAN−1B −PAN−2B . . . −PB

R 0 . . . 0
−R 0 . . . 0
. . . . . . . . . . . .
0 0 . . . R
0 0 . . . −R




Wǫ = [

2nN+2r︷ ︸︸ ︷
0 . . . 0

2mN︷ ︸︸ ︷
0 . . . 0]′

Sǫ = [

2nN︷ ︸︸ ︷
−Q′ Q′ (−QA)′ (QA)′ (−QA2)′ . . . (QAN−1)′ (−QAN−1)′)′

2r︷ ︸︸ ︷
(−PAN )′ (PAN )′

2mN︷ ︸︸ ︷
0′m . . . 0′m]′.

(9.10)

Note that in (9.10) we include the zero vector Wǫ to make the notation
consistent with the one used in Section 6.2.

By treating x(0) as a vector of parameters, the problem (9.9) becomes a
multiparametric linear program (mp-LP) that can be solved as described in
Section 6.2. Once the multiparametric problem (9.7) has been solved, the
explicit solution z∗0(x(0)) of (9.9) is available as a piecewise affine function
of x(0), and the optimal control law U∗

0 is also available explicitly, as the
optimal input U∗

0 consists simply of the last part of z∗0(x(0))

U∗
0 (x(0)) = [0 . . . 0 Im Im . . . Im]z∗0(x(0)). (9.11)

Theorem 6.4 states that there exists a continuous and PPWA solution
z∗0(x) of the mp-LP problem (9.9). Clearly the same properties are inherited
by the controller. The following Corollaries of Theorem 6.4 summarize the
analytical properties of the optimal control law and the value function.

Corollary 9.1. There exists a control law U∗
0 = f̄0(x(0)), f̄0 : Rn → Rm,

obtained as a solution of the optimal control problem (9.2)-(9.4) with p = 1
or p =∞, which is continuous and PPWA

f̄0(x) = F̄ i
0x if x ∈ CRi

0, i = 1, . . . , N r
0 (9.12)

where the polyhedral sets CRi
0 , {Hi

0x ≤ 0}, i = 1, . . . , N r
0 , are a partition

of Rn.

Note that in Corollary 9.1 the control law is linear (not affine) and the crit-
ical regions have a conic shape (CRi

0 , {Hi
0x ≤ 0}). This can be proven
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immediately from the results in Section 6.2 by observing that the constant
term Wǫ at the right-hand side on the mp-LP problem (9.9) is zero.

Corollary 9.2. The value function J∗(x) obtained as a solution of the opti-
mal control problem (9.2)-(9.4) is convex and PPWA.

Remark 9.2. Note that if the optimizer of problem (9.4) is unique for all
x(0) ∈ Rn, then Corollary 9.1 reads: “ The control law U∗(0) = f̄0(x(0)),
f̄0 : Rn → Rm, obtained as a solution of the optimal control problem (9.2)-
(9.4) with p = 1 or p = ∞, is continuous and PPWA,. . .”. From the results
of Section 6.2 we know that in case of multiple optima for some x(0) ∈ Rn,
a control law of the form (9.12) can always be computed.

9.2 Solution via Recursive Approach

Alternatively we can use dynamic programming to solve the same problem
in a recursive manner. We define the optimal cost J∗

j (xj) for the N − j step
problem starting from state xj by

J∗
j (xj) , min

uj ,··· ,uN−1

‖PxN‖∞ +

N−1∑

k=j

‖Qxk‖∞ + ‖Ruk‖∞

According to the principle of optimality the optimal one step cost-to-go can
be obtained from

J∗
N−1(xN−1) = min

uN−1

‖PNxN‖∞ + ‖QxN−1‖∞ + ‖RuN−1‖∞ (9.13)

xN = AxN−1 + BuN−1

PN = P
(9.14)

Substituting (9.14) into the objective function (9.13), we have

J∗
N−1(xN−1) = min

uN−1

‖PN (AxN−1 + BuN−1)‖∞ + ‖QxN−1‖∞ + ‖RuN−1‖∞
(9.15)

We find the optimum by solving the mp-LP

min
εx

N−1,εx
N ,εu

N−1,uN−1

εx
N−1 + εx

N + εu
N−1 (9.16a)

subj. to −1nεx
N−1 ≤ ±QxN−1 (9.16b)

−1rε
x
N ≤ ±PN [AxN−1 + BuN−1] , (9.16c)

−1mεu
N−1 ≤ ±RuN−1, (9.16d)

By Theorem 6.4, J∗
N−1 is a convex and piecewise affine function of xN−1,

the corresponding optimizer u∗
N−1 is piecewise affine and continuous, and the
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feasible set XN−1 is Rn. We use the equivalence of representation between
convex and PPWA functions and infinity norm (see Section 4.1.5) to write
the one-step optimal cost-to-go as

J∗
N−1(xN−1) = ‖PN−1xN−1‖∞, (9.17)

with PN−1 defined appropriately. At the next stage, consider the two-step
problem from time N − 2 forward:

J∗
N−2(xN−2) = min

uN−2

‖PN−1xN−1‖∞ + ‖QxN−2‖∞ + ‖RuN−2‖∞ (9.18)

xN−1 = AxN−2 + BuN−2 (9.19)

We recognize that (9.18), (9.19) has the same form as (9.13), (9.14). There-
fore we can compute the optimal solution again by solving the mp-LP

min
εx

N−2,εx
N−1,εu

N−2,uN−2

εx
N−2 + εx

N−1 + εu
N−2 (9.20a)

subj. to −1nεx
N−2 ≤ ±QxN−2 (9.20b)

−1rε
x
N−1 ≤ ±PN−1 [AxN−2 + BuN−2] , (9.20c)

−1mεu
N−2 ≤ ±RuN−2, (9.20d)

The optimal two-step cost-to-go is

J∗
N−2(xN−2) = ‖PN−2xN−2‖∞, (9.21)

Continuing in this manner, at some arbitrary time k the optimal control
action is

u∗(k) = fk(x(k)) (9.22)

where fk(x) is continuous and PPWA

fk(x) = F i
kx if Hi

kx ≤ 0, i = 1, . . . , Nr
k (9.23)

where the polyhedral sets {Hi
kx ≤ 0}, i = 1, . . . , N r

k , are a partition of Rn.
The optimal cost-to-go starting from the measured state x(k) is

J∗
k (x(k)) = ‖Pkx(k)‖∞ (9.24)

Here we have introduced the notation Pk to express the optimal cost-to-
go J∗

k (x(k)) = ‖Pkx(k)‖∞ from time k to the end of the horizon N . We
also remark that the rows of Pk correspond to the different affine functions
constituting J∗

k and thus their number varies with the time index k. Clearly,
we do not have a closed form as for the 2-norm Riccati Difference Equation
(8.23) linking cost and control law at time k given their value at time k − 1.
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9.3 Comparison Of The Two Approaches

We will compare the batch and the recursive dynamic programming approach
in terms of the results and the methods used to obtain the results. Most
importantly we observe that the results obtained by the two methods are
fundamentally different. The batch approach yields a formula for the sequence
of inputs as a function of the initial state.

U∗
0 = F̄ i

0x(0) if H̄i
0x(0) ≤ 0, i = 1, . . . , N̄ r

0 (9.25)

The recursive dynamic programming approach yields a feedback policy, i.e.,
a sequence of feedback laws expressing at each time step the control action as
a function of the state at that time.

u∗(k) = F i
kx(k) if Hi

kx(k) ≤ 0, i = 1, . . . , N r
k for k = 0, . . . , N − 1 (9.26)

As this expression implies, we determine u(k) at each time k as a function of
the current state x(k) rather than use a u(k) precomputed at k = 0 as in the
batch method. If the state evolves exactly according to the linear model (9.3)
then the sequence of control actions u(k) obtained from the two approaches
is identical. In practice, the result of applying the sequence (9.25) in an open-
loop fashion may be rather different from applying the time-varying feedback
law (9.26) because the model (9.3) for predicting the system states may be
inaccurate and the system may be subject to disturbances not included in
the model. We expect the application of the feedback law to be more robust
because at each time step the observed state x(k) is used to determine the
control action rather than the state xk predicted at time t = 0.

We note that we can get the same feedback effect with the batch approach
if we recalculate the optimal open-loop sequence at each time step j with the
current measurement as initial condition. In this case we need to solve the
following optimization problem

J∗
j (x(j)) = minuj ,··· ,uN−1 ‖PxN‖∞ +

∑N−1
k=j ‖Qxk‖∞ + ‖Ruk‖∞

subj. to xj = x(j)
(9.27)

where we note that the horizon length is shrinking at each time step.
As seen from (9.25) the solution to (9.27) relates the sequence of inputs

u∗
j , u

∗
j+1, . . . to the state x(j) through a linear expression. The first part of

this expression yields again the optimal feedback law (9.26) at time j, u∗(j) =
fj(x(j)).

Here the dynamic programming approach is clearly a more efficient way
to generate the feedback policy because it requires the solution of a small
mp-LP problem (9.7) for each time step. Repeated application of the batch
approach, on the other hand, requires repeatedly the solution of a larger
mp-LP for each time step.
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9.4 Infinite Horizon Problem

For continuous processes operating over a long time period it would be in-
teresting to solve the following infinite horizon problem.

J∗
∞(x(0)) = min

u(0),u(1),...

∞∑

k=0

‖Qxk‖∞ + ‖Ruk‖∞ (9.28)

Since the prediction must be carried out to infinity, application of the batch
method becomes impossible. On the other hand, derivation of the optimal
feedback law via dynamic programming remains viable. We can use the dy-
namic programming

‖Pjxj‖∞ = min
uj

‖Pj+1xj+1‖∞ + ‖Qxj‖∞ + ‖Ruj‖∞ (9.29)

xj+1 = Axj + Buj (9.30)

with the terminal cost matrix P0 = Q and solve it backwards for k → −∞.
Let us assume for the moment that the iterations converge to a solution P∞
in a finite number of iterations. Then, the optimal feedback control law is
time-invariant and piecewise affine

u∗(k) = F ix(k) if Hix ≤ 0, i = 1, . . . , Nr (9.31)

and the optimal infinite horizon cost is

J∗
∞(x(0)) = ‖P∞x(0)‖∞. (9.32)

In general, the infinite time optimal cost J∗
∞(x(0)) and the optimal feed-

back control law are not necessarily piecewise affine (with a finite number
of regions). Convergence of the recursive scheme (9.29) has been studied in
detail in [81]. If this recursive scheme converges and Q and R are of full
column rank, then the resulting control law (9.31) stabilizes the system (see
Section 7.4).

Example 9.1. Consider the double integrator system

{
x(t + 1) =

[
1 1
0 1

]
x(t) +

[
0
1

]
u(t) (9.33)

The aim is to compute the infinite horizon optimal controller that solves the

optimization problem (9.28) with Q =

[
1 0
0 1

]
and R = 20.

The dynamic programming iteration (9.29) converges after 18 iterations
to the following optimal solution:
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u =





[ 9.44 29.44 ] x if
[−0.10 −1.00
−0.71 −0.71

]
x ≤ [ 0

0 ] (Region #1)

[ 9.00 25.00 ] x if
[

0.10 1.00
−0.11 −0.99

]
x ≤ [ 0

0 ] (Region #2)

[−1.00 19.00 ] x if
[−0.45 −0.89

0.71 0.71

]
x ≤ [ 0

0 ] (Region #3)

[ 8.00 16.00 ] x if
[

0.11 0.99
−0.12 −0.99

]
x ≤ [ 0

0 ] (Region #4)

[−2.00 17.00 ] x if
[−0.32 −0.95

0.45 0.89

]
x ≤ [ 0

0 ] (Region #5)

[ 7.00 8.00 ] x if
[

0.12 0.99
−0.14 −0.99

]
x ≤ [ 0

0 ] (Region #6)

[−3.00 14.00 ] x if
[

0.32 0.95
−0.24 −0.97

]
x ≤ [ 0

0 ] (Region #7)

[ 6.00 1.00 ] x if
[

0.14 0.99
−0.16 −0.99

]
x ≤ [ 0

0 ] (Region #8)

[−4.00 10.00 ] x if
[

0.24 0.97
−0.20 −0.98

]
x ≤ [ 0

0 ] (Region #9)

[ 5.00 −5.00 ] x if
[

0.16 0.99
−0.20 −0.98

]
x ≤ [ 0

0 ] (Region #10)

[−5.00 5.00 ] x if
[

0.20 0.98
−0.16 −0.99

]
x ≤ [ 0

0 ] (Region #11)

[ 4.00 −10.00 ] x if
[

0.20 0.98
−0.24 −0.97

]
x ≤ [ 0

0 ] (Region #12)

[−6.00 −1.00 ] x if
[

0.16 0.99
−0.14 −0.99

]
x ≤ [ 0

0 ] (Region #13)

[ 3.00 −14.00 ] x if
[

0.24 0.97
−0.32 −0.95

]
x ≤ [ 0

0 ] (Region #14)

[−7.00 −8.00 ] x if
[

0.14 0.99
−0.12 −0.99

]
x ≤ [ 0

0 ] (Region #15)

[ 2.00 −17.00 ] x if
[

0.32 0.95
−0.45 −0.89

]
x ≤ [ 0

0 ] (Region #16)

[−8.00 −16.00 ] x if
[

0.12 0.99
−0.11 −0.99

]
x ≤ [ 0

0 ] (Region #17)

[ 1.00 −19.00 ] x if
[

0.45 0.89
−0.71 −0.71

]
x ≤ [ 0

0 ] (Region #18)

[−9.00 −25.00 ] x if
[

0.11 0.99
−0.10 −1.00

]
x ≤ [ 0

0 ] (Region #19)

[−9.44 −29.44 ] x if [ 0.10 1.00
0.71 0.71 ] x ≤ [ 0

0 ] (Region #20)

with P∞ equal to
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P∞ =




9.4444 29.4444
9.0000 25.0000
−1.0000 19.0000
8.0000 16.0000
−2.0000 17.0000
7.0000 8.0000
−3.0000 14.0000
6.0000 1.0000
−4.0000 10.0000
5.0000 −5.0000
−5.0000 5.0000
4.0000 −10.0000
−6.0000 −1.0000
3.0000 −14.0000
−7.0000 −8.0000
2.0000 −17.0000
−8.0000 −16.0000
1.0000 −19.0000
−9.0000 −25.0000
−9.4444 −29.4444




(9.34)

Note that P∞ in (9.34) has 20 rows corresponding to the 20 linear terms (or
pieces) of the piecewise linear value function J∗

∞(x) = ‖P∞x‖∞ for x ∈ R2.
For instance, J∗

∞(x) in region 1 is J∗
∞(x) = 9.4444x1 + 29.4444x2, where x1

and x2 denote the first and second component of the state vector x, respec-
tively. Note that each linear term appears twice, with positive and negative
sign. Therefore J∗

∞(x) can be written in minimal form as the infinity norm of
a matrix ‖P̃∞x‖∞ with P̃∞ being a matrix with ten rows. The value function
J∗
∞(x) = ‖P∞x‖∞ is plotted in Figure 9.1.



9.4 Infinite Horizon Problem 161

−100
0

100

−100−50050100
0

1000

2000

3000

x
1x

2

 J
* ( 

x)

Fig. 9.1 Piecewise linear infinite time cost and corresponding polyhedral partition
solution to Example 9.1
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In this chapter we study the finite time and infinite time optimal control
problem for linear systems with linear constraints on inputs and state vari-
ables. We establish the structure of the optimal control law and derive algo-
rithms for its computation. For finite time problems with linear and quadratic
objective functions we show that the time varying feedback law is piecewise
affine and continuous. The value function is a convex piecewise linear, resp.
piecewise quadratic function of the initial state. We describe how the op-
timal control law can be efficiently computed by means of multiparametric
linear, resp. quadratic programming. Finally we show how to compute the
infinite time optimal controller for quadratic and linear objective functions
and prove that, when it exists, the infinite time controller inherits all the
structural properties of the finite time optimal controller.

Before formulating the finite time optimal control problem, we first intro-
duce some fundamental concepts of set invariance theory.

10.1 Invariant Sets

In this section we deal with two types of systems, namely, autonomous sys-
tems:

x(t + 1) = fa(x(t)), (10.1)

and systems subject to external inputs:

x(t + 1) = f(x(t), u(t)). (10.2)

We assume that the origin is an equilibrium for system (10.1) and for sys-
tem (10.2) when u = 0. Both systems are subject to state and input con-
straints

x(t) ∈ X , u(t) ∈ U , ∀ t ≥ 0. (10.3)

The sets X and U are polyhedra and contain the origin in their interior.
For the autonomous system (10.1) we denote the one-step reachable set

for initial states x contained in the set S as

Reach(S) , {x ∈ Rn : ∃ x(0) ∈ S s.t. x = fa(x(0))}.

For the system (10.2) with inputs we will denote the one-step reachable set
for initial states x contained in the set S as

Reach(S) , {x ∈ Rn : ∃ x(0) ∈ S, ∃ u(0) ∈ U s.t. x = f(x(0), u(0))}.

Therefore, all the states contained in S are mapped into the set Reach(S)
under the map fa or under the map f for some input u ∈ U . “Pre” sets are
the dual of one-step reachable sets. The set
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Pre(S) , {x ∈ Rn : fa(x) ∈ S} (10.4)

defines the set of states which evolve into the target set S in one time step
for the system (10.1). Similarly, for the system (10.2) the set of states which
can be driven into the target set S in one time step is defined as

Pre(S) , {x ∈ Rn : ∃u ∈ U s.t. f(x, u) ∈ S} (10.5)

Example 10.1. Consider the second order autonomous stable system

x(t + 1) = Ax(t) =

[
0.5 0
1 −0.5

]
x(t) (10.6)

subject to the state constraints

x(t) ∈ X =

{
x |
[
−10
−10

]
≤ x ≤

[
10
10

]}
, ∀t ≥ 0 (10.7)

The set Pre(X ) can be obtained as follows: Since the set X is a polytope, it
can be represented as a H-polytope (Section 3.2)

X = {x : Hx ≤ h}, (10.8)

where

H =




1 0
0 1
−1 0
0 −1


 and h =




10
10
10
10




By using this H-presentation and the system equation (10.6), the set
Pre(X ) can be derived:

Pre(X ) =
{
x : Hfa(x) ≤ h,

}
(10.9)

= {x : HAx ≤ h} (10.10)

The set (10.10) may contain redundant inequalities which can be removed
by using Algorithm 3.1 in Section 3.4.4 to obtain its minimal representation.
Note that by using the notation in Section 3.4.11, the set Pre(X ) in (10.10)
is simply X ◦A.

The set Pre(X ) is

Pre(X ) =





x :




1 0
1 −0.5
−1 0
−1 −0.5


x ≤




20
10
20
10








The set Pre(X ) ∩ X , the significance of which we will discuss below, is
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Pre(X ) ∩ X =





x :




1 0
0 1
−1 0
0 −1
1 −0.5
−1 0.5




x ≤




10
10
10
10
10
10








and it is depicted in Fig. 10.1.

x1

x
2

X

Pre(X )∩X

-10 -5 0 5 10

-10

-5

0

5

10

Fig. 10.1 Example 10.1: Pre(X ) ∩ X for system (10.6) under constraints (10.7).

The set Reach(X ) is obtained by applying the map A to the set X . Let us
write X in V-representation (see Section 3.1)

X = conv(V ) (10.11)

and let us map the set of vertices V through the transformation A. Because
the transformation is linear, the reach set is simply the convex hull of the
transformed vertices

Reach(X ) = A ◦ X = conv(AV ) (10.12)

We refer the reader to Section 3.4.11 for a detailed discussion on linear trans-
formations of polyhedra.

The set Reach(X ) in H-representation is

Reach(X ) =





x :




1 0
−1 0
1 −0.5
−1 0.5


x ≤




5
5

2.5
2.5








and is depicted in Fig. 10.2.

Example 10.2. Consider the second order unstable system
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x1
x
2

X

Reach(X )

-10 0 10

-10

0

10

Fig. 10.2 Example 10.1: one-step reachable sets for system (10.6)

{
x(t + 1) = Ax + Bu =

[
1.5 0
1 −1.5

]
x(t) +

[
1
0

]
u(t) (10.13)

subject to the input and state constraints

u(t) ∈ U = {u| − 5 ≤ u ≤ 5} , ∀t ≥ 0 (10.14a)

x(t) ∈ X =

{
x |
[
−10
−10

]
≤ x ≤

[
10
10

]}
, ∀t ≥ 0 (10.14b)

For the non-autonomous system (10.13), the set Pre(X ) can be computed
using the H-representation of X and U ,

X = {x | Hx ≤ h}, U = {u | Huu ≤ hu}, (10.15)

to obtain

Pre(X ) =
{
x ∈ R2 | ∃u ∈ U s.t. f(x, u) ∈ X ,

}
(10.16)

=

{
x ∈ R2 | ∃u ∈ R s.t.

[
HA HB
0 Hu

](
x
u

)
≤
[

h
hu

]}
. (10.17)

The half-spaces in (10.17) define a polytope in the state-input space, and
a projection operation (see Section 3.4.6) is used to derive the half-spaces
which define Pre(X ) in the state space. The set Pre(X ) ∩ X is depicted in
Fig. 10.3 and reported below:




1 0
0 1
−1 0
0 −1
1 −1.5
−1 1.5




x ≤




10
10
10
10
10
10



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x1
x
2

X

Pre(X ) ∩ X
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-10

-5

0
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10

Fig. 10.3 Example 10.2: Pre(X ) ∩ X for system (10.13) under constraints (10.14).

Note that by using the definition of the Minkowski sum given in Sec-
tion 3.4.9 and the affine operation on polyhedra in Section 3.4.11 we can
compactly write the operations in (10.17) as follows:

Pre(X ) = {x : ∃u ∈ U s.t. Ax + Bu ∈ X}
{x : y = Ax + Bu, y ∈ X , u ∈ U}
{x : Ax = y + (−Bu), y ∈ X , u ∈ U}
{x : Ax ∈ C, C = X ⊕ (−B) ◦ U}
{x : x ∈ C ◦A, C = X ⊕ (−B) ◦ U}
{x : x ∈ (X ⊕ (−B) ◦ U) ◦A}

(10.18)

The set Reach(X ) = {Ax + Bu ∈ R2 : x ∈ X , u ∈ U} is obtained by
applying the map A to the set X and then considering the effect of the input
u ∈ U . As shown before,

A ◦ X = conv(AV ) (10.19)

and therefore

Reach(X ) = {y + Bu : y ∈ A ◦ X , u ∈ U}

We can use the definition of the Minkowski sum given in Section 3.4.9 and
rewrite the set Reach(X ) as

Reach(X ) = (A ◦ X )⊕ (B ◦ U)

We can compute the Minkowski sum via projection or vertex enumeration
as explained in Section 3.4.9 and obtain the set Reach(X ) inH-representation
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Reach(X ) =





x :




1 0
−1 0
1 −1.5
1 −1.5
−1 1.5




x ≤




20
20
25
25

27.5
27.5








which is depicted in Fig. 10.4.

x1

x
2 Reach(X )

-20 -10 0 10 20
-40

-20

0

20

40

Fig. 10.4 Example 10.2: one-step reachable sets for system (10.13) under constraints
(10.14).

Remark 10.1. In summary, the sets Pre(X ) and Reach(X ) are the results of
linear operations on the polyhedra X and U and therefore are polyhedra. By
using the definition of the Minkowski sum given in Section 3.4.9 and of affine
operation on polyhedra in Section 3.4.11 we can compactly summarize the
Pre and Reach operations on linear systems as follows:

x(t + 1) = Ax(t) x(k + 1) = Ax(t) + Bu(t)
Pre(X ) X ◦A (X ⊕ (−B ◦ U)) ◦A

Reach(X ) A ◦ X (A ◦ X )⊕ (B ◦ U)

Table 10.1 Pre and Reach operations for linear systems subject to polyhedral input
and state constraints x(t) ∈ X , u(t) ∈ U

Two different types of sets are considered in this chapter: invariant sets
and control invariant sets. We will first discuss invariant sets. Invariant sets
are computed for autonomous systems. These types of sets are useful to
answer questions such as: “For a given feedback controller u = g(x), find the
set of initial states whose trajectory will never violate the system constraints”.
The following definitions, derived from [158, 52, 47, 45, 163, 128, 129, 130],
introduce the different types of invariant sets.
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Definition 10.1 (Positive Invariant Set). A set O ⊆ X is said to be
a positive invariant set for the autonomous system (10.1) subject to the
constraints in (10.3), if

x(0) ∈ O ⇒ x(t) ∈ O, ∀t ∈ N+

Definition 10.2 (Maximal Positive Invariant Set O∞). The set O∞ ⊆
X is the maximal invariant set of the autonomous system (10.1) subject to
the constraints in (10.3) if 0 ∈ O∞, O∞ is invariant and O∞ contains all the
invariant sets that contain the origin.

Remark 10.2. The condition that O∞ must contain the origin is added be-
cause system (10.1) may have multiple equilibrium points and thus multiple
invariant sets which are disconnected. Furthermore, if these sets are used as
a target sets in control problems, they should contain only one equilibrium
point in order to get predictable closed-loop behavior.

Remark 10.3. The maximal invariant sets defined here are often referred to as
‘maximal admissible sets’ or ‘maximal output admissible sets’ in the literature
(e.g. [115]), depending on whether the system state or output is constrained.

Theorem 10.1 (Geometric condition for invariance [90]). A set O ⊆
X is a positive invariant set for the autonomous system (10.1) subject to the
constraints in (10.3), if and only if

O ⊆ Pre(O) (10.20)

Proof: We prove both the necessary and sufficient parts by contradiction.
(⇐:) If O * Pre(O) then ∃x̄ ∈ O such that x̄ /∈ Pre(O). From the definition
of Pre(O), Ax̄ /∈ O and thus O is not positive invariant. (⇒:) If O is not
a positive invariant set then ∃x̄ ∈ O such that Ax̄ /∈ O. This implies that
x̄ ∈ O and x̄ /∈ Pre(O) and thus O * Pre(O) 2

It is immediate to prove that condition (10.20) of Theorem 10.1 is equiv-
alent to the following condition

Pre(O) ∩ O = O (10.21)

Based on condition (10.21), the following algorithm provides a procedure for
computing the maximal positive invariant subsetO∞ for system (10.1),(10.3) [10,
45, 158, 115].

Algorithm 10.1 (Computation of O∞)

INPUT fa , X
OUTPUT O∞

1. LET Ω0 ← X
2. LET Ωk+1 ← Pre(Ωk) ∩Ωk

3. IF Ωk+1 = Ωk THEN

O∞ ← Ωk+1

ELSE GOTO 2
4. END
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Algorithm 10.1 generates the set sequence {Ωk} satisfying Ωk+1 ⊆ Ωk, ∀k ∈
N and, if it terminates, it terminates when Ωk+1 = Ωk so that Ωk is the
maximal positive invariant set O∞ for the system (10.1)-(10.3). In general,
Algorithm 10.1 may never terminate. Condition for finite time termination
of Algorithm 10.1 can be found in [114].

Example 10.3. Consider the second order stable system in Example 10.1. The
maximal positive invariant set of system (10.6) subject to constraints (10.7)
is depicted in Fig. 10.5 and reported below:




1 0
0 1
−1 0
0 −1
1 −0.5
−1 0.5




x ≤




10
10
10
10
10
10




Note from the previous discussion of the example and from Figure 10.1
that here the maximal positive invariant set O∞ is obtained after a single
step of Algorithm 10.1, i.e.

O∞ = Ω1 = Pre(X ) ∩ X .

x1

x
2

X

O∞

-10 -5 0 5 10

-10

-5

0

5

10

Fig. 10.5 Maximal Positive Invariant Set of system (10.6) under constraints (10.7).

Control invariant sets are defined for systems subject to external in-
puts. These types of sets are useful to answer questions such as: “Find the
set of initial states for which there exists a controller such that the sys-
tem constraints are never violated”. The following definitions, adopted from
[158, 52, 47, 45, 163], introduce the different types of control invariant sets.

Definition 10.3 (Control Invariant Set). A set C ⊆ X is said to be a
control invariant set for the system in (10.2) subject to the constraints in
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(10.3), if

x(t) ∈ C ⇒ ∃u(t) ∈ U such that f(x(t), u(t)) ∈ C, ∀t ∈ N+

Definition 10.4 (Maximal Control Invariant Set C∞). The set C∞ ⊆ X
is said to be the maximal control invariant set for the system in (10.2) subject
to the constraints in (10.3), if it is control invariant and contains all control
invariant sets contained in X .

Remark 10.4. The geometric conditions for invariance (10.20), (10.21) hold
for control invariant sets.

The following algorithm provides a procedure for computing the maximal
control invariant set C∞ for system (10.2),(10.3) [10, 45, 158, 115].

Algorithm 10.2 (Computation of C∞)

INPUT f , X and U
OUTPUT C∞
1. LET Ω0 ← X
2. LET Ωk+1 ← Pre(Ωk) ∩Ωk

3. IF Ωk+1 = Ωk THEN

C∞ ← Ωk+1

ELSE GOTO 2
4. END

Algorithm 10.2 generates the set sequence {Ωk} satisfying Ωk+1 ⊆ Ωk, ∀k ∈ N
and O∞ =

⋂
k≥0 Ωk. If Ωk = 0 for some integer k then the simple conclusion

is that O∞ = 0. Algorithm 10.2 terminates if Ωk+1 = Ωk so that Ωk is the
maximal control invariant set C∞ for the system (10.2)-(10.3). In general,
Algorithm 10.2 may never terminate [10, 45, 158, 151]. The same holds true
for non-autonomous systems.

Example 10.4. Consider the second order unstable system in example 10.2.
Algorithm 10.2 is used to compute the maximal control invariant set of sys-
tem (10.13) subject to constraints (10.14). Algorithm 10.2 terminates after
45 iterations and the maximal control invariant set C∞ is:




1 0
0 1
−1 0
0 −1

−0.25 0.375
0.25 −0.375




x ≤




4
10
10
4
1
1




The results of the iterations and C∞ are depicted in Fig. 10.6.

Definition 10.5 (Finitely determined set). Consider Algorithm 10.1 (Al-
gorithm 10.2). The set O∞ (C∞) is finitely determined if and only if ∃ i ∈ N
such that Ωi+1 = Ωi. The smallest element i ∈ N such that Ωi+1 = Ωi is
called the determinedness index.
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x1
x
2

X

C∞

-10 -5 0 5 10

-10

-5

0

5

10

Fig. 10.6 Maximal Control Invariant Set of system (10.13) subject to con-
straints (10.14).

Remark 10.5. From Remark 10.1, for linear system with linear constraints
the sets O∞ and C∞ are polyhedra if they are finitely determined.

For all states contained in the maximal control invariant set C∞ there
exists a control law, such that the system constraints are never violated.
This does not imply that there exists a control law which can drive the state
into a user-specified target set. This issue is addressed in the following by
introducing the concept of stabilizable sets.

Definition 10.6 (N-Step Controllable Set KN (O)). For a given target
set O ⊆ X , the N -step controllable set KN (O) of the system (10.2) subject
to the constraints (10.3) is defined recursively as:

Kj(O) , Pre(Kj−1(O)), K0(O) = O, j ∈ {1, . . . , N}

From Definition 10.6, all states x0 belonging to the N -Step Controllable Set
KN (O) can be driven, by a suitable control sequence, to the target set O in
N steps, while satisfying input and state constraints.

Definition 10.7 (Maximal Controllable Set K∞(O)). For a given target
set O ⊆ X , the maximal controllable set K∞(O) for system (10.2) subject to
the constraints in (10.3) is the union of all N -step controllable sets KN (O)
contained in X (N ∈ N).

We will often deal with controllable sets KN (O) where the target O is a
control invariant set. They are special sets, since in addition to guaranteeing
that from KN (O) we reach O in N steps, one can ensure that once it has
reached O, the system can stay there at all future time instants.

Definition 10.8 (N-step (Maximal) Stabilizable Set). For a given con-
trol invariant set O ⊆ X , the N -step (maximal) stabilizable set of the sys-
tem (10.2) subject to the constraints (10.3) is the N -step (maximal) control-
lable set KN (O) (K∞(O)).
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The set K∞(O) contains all states which can be steered into the control
invariant set O and hence K∞(O) ⊆ C∞. For linear systems the set K∞(O) ⊆
C∞ can be computed as follows (cf. [52, 48]):

Algorithm 10.3 (Maximal Stabilizable Set K∞(O))

1. K0 ← O, where O is a control invariant set
2. Kc+1 ← Pre(Kc)
3. If Kc+1 = Kc, then K∞(O) ← Kc, return; Else, set c = c + 1 and goto

2.

Since O is control invariant, it holds ∀c ∈ N that Kc(O) is control invariant
and Kc ⊆ Kc+1. Note that Algorithm 10.3 is not guaranteed to terminate in
finite time.

Remark 10.6. In general, the maximal stabilizable set K∞(O) is not equal to
the maximal control invariant set C∞, even for linear systems. K∞(O) ⊆ C∞
for all control invariant sets O. The set C∞ \K∞(O) includes all initial states
from which it is not possible to steer the system to the stabilizable region
K∞(O) and hence O.

Example 10.5. Consider the simple constrained one-dimensional system

x(t + 1) = 2x(t) + u(t), (10.22a)

|x(t)| ≤ 1, and |u(t)| ≤ 1 (10.22b)

and the state-feedback control law

u(t) =





1 if x(t) ∈
[
−1, − 1

2

]
,

−2x(t) if x(t) ∈
[
− 1

2 , 1
2

]
,

−1 if x(t) ∈
[

1
2 , 1

] (10.23)

The closed-loop system has three equilibria at−1, 0, and 1 and system (10.22)
is always feasible for all initial states in [−1, 1] and therefore C∞ = [−1, 1].
It is, however, asymptotically stable only for the open set (−1, 1). In fact,
u(t) and any other feasible control law cannot stabilize the system from x = 1
and from x = −1 and therefore when O = 0 then K∞(O) = (−1, 1) ⊂ C∞.
We note in this example that the maximal stabilizable set is open. One can
easily argue that, in general, if the maximal stabilizable set is closed then it
is equal to the maximal control invariant set.

N -step reachable sets are defined analogously to N -step controllable sets.

Definition 10.9 (N-Step Reachable Set RN (X0)). For a given initial
set X0 ⊆ X , the N -step reachable set RN (X0) of the system (10.1) or (10.2)
subject to the constraints (10.3) is defined as:

Ri+1(X0) , Reach(Ri(X0)), R0(X0) = X0, i = 0, . . . , N − 1
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From Definition 10.9, all states x0 belonging to X0 will evolve to the N -step
reachable set RN (X0) in N steps.

10.2 Constrained Optimal Control Problem Formulation

Consider the linear time-invariant system

x(t + 1) = Ax(t) + Bu(t) (10.24)

where x(t) ∈ Rn, u(t) ∈ Rm are the state and input vectors, respectively,
subject to the constraints

x(t) ∈ X , u(t) ∈ U , ∀t ≥ 0 (10.25)

The sets X ⊆ Rn and U ⊆ Rm are polyhedra.

Remark 10.7. The results of this chapter also hold for more general forms of
linear constraints such as mixed input and state constraints

[x(t)′, u(t)′] ∈ Px,u (10.26)

where Px,u is a polyhedron in Rn+m or mixed input and state constraints
over a finite time

[x(0)′, . . . , x(N − 1)′, u(0)′, . . . , u(N − 1)′] ∈ Px,u,N (10.27)

where Px,u,N is a polyhedron in RN(n+m). Note that constraints of the
type (10.27) can arise, for example, from constraints on the input rate
∆u(t) , u(t)−u(t−1). In this chapter, for the sake of simplicity, we will use
the less general form (10.25).

Define the cost function

J0(x(0), U0) , p(xN ) +
N−1∑

k=0

q(xk, uk) (10.28)

where xk denotes the state vector at time k obtained by starting from the
state x0 = x(0) and applying to the system model

xk+1 = Axk + Buk (10.29)

the input sequence U0 , [u′
0, . . . , u

′
N−1]

′.
If the 1-norm or ∞-norm is used in the cost function (10.28), then we set

p(xN ) = ‖PxN‖p and q(xk, uk) = ‖Qxk‖p + ‖Ruk‖p with p = 1 or p = ∞
and P , Q, R full column rank matrices. Cost (10.28) is rewritten as
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J0(x(0), U0) , ‖PxN‖p +

N−1∑

k=0

‖Qxk‖p + ‖Ruk‖p (10.30)

If the squared euclidian norm is used in the cost function (10.28), then we
set p(xN ) = x′

NPxN and q(xk, uk) = x′
kQxk + u′

kRuk with P � 0, Q � 0
and R ≻ 0. Cost (10.28) is rewritten as

J0(x(0), U0) , x′
NPxN +

N−1∑

k=0

x′
kQxk + u′

kRuk (10.31)

Consider the constrained finite time optimal control problem (CFTOC)

J∗
0 (x(0)) = minU0 J0(x(0), U0)

subj. to xk+1 = Axk + Buk, k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0)

(10.32)

where N is the time horizon and Xf ⊆ Rn is a terminal polyhedral region.

In (10.28)–(10.32) U0 = [u′
0, . . . , u

′
N−1]

′ ∈ Rs, s , mN is the optimization
vector. We denote with X0 ⊆ X the set of initial states x(0) for which the
optimal control problem (10.28)–(10.32) is feasible, i.e.,

X0 = {x0 ∈ Rn : ∃(u0, . . . , uN−1) such that xk ∈ X , uk ∈ U , k = 0, . . . , N − 1, xN ∈ Xf

where xk+1 = Axk + Buk, k = 0, . . . , N − 1},
(10.33)

Note that we distinguish between the current state x(k) of system (10.24) at
time k and the variable xk in the optimization problem (10.32), that is the
predicted state of system (10.24) at time k obtained by starting from the state
x0 = x(0) and applying to system (10.29) the input sequence u0, . . . , uk−1.
Analogously, u(k) is the input applied to system (10.24) at time k while uk

is the k-th optimization variable of the optimization problem (10.32).
If we use cost (10.31) with the squared euclidian norm and set

{(x, u) ∈ Rn+m : x ∈ X , u ∈ U} = Rn+m, Xf = Rn, (10.34)

problem (10.32) becomes the standard unconstrained finite time optimal con-
trol problem (Chapter 8) whose solution (under standard assumptions on A,
B, P , Q and R) can be expressed through the time varying state feedback
control law (8.27)

u∗(k) = Fkx(k) k = 0, . . . , N − 1 (10.35)

The optimal cost is given by

J∗
0 (x(0)) = x(0)′P0x(0). (10.36)
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If we let N → ∞ as discussed in Section 8.4, then Problem (10.31)–
(10.32)–(10.34) becomes the standard infinite horizon linear quadratic regu-
lator (LQR) problem whose solution (under standard assumptions on A, B,
P , Q and R) can be expressed as the state feedback control law (cf. (8.32))

u∗(k) = F∞x(k), k = 0, 1, . . . (10.37)

In the following chapters we will show that the solution to Problem (10.32)
can again be expressed in feedback form where now u∗(k) is a continuous
piecewise affine function on polyhedra of the state x(k), i.e., u∗(k) = fk(x(k))
where

fk(x) = F j
kx + gj

k if Hj
kx ≤ Kj

k, j = 1, . . . , N r
k . (10.38)

Matrices Hj
k and Kj

k in equation (10.38) describe the j-th polyhedron CRj
k =

{x ∈ Rn|Hj
kx ≤ Kj

k} inside which the feedback optimal control law u∗(k) at

time k has the affine form F j
kx+gj

k. The set of polyhedra CRj
k, j = 1, . . . , N r

k

is a polyhedral partition of the set of feasible states Xk of Problem (10.32)
at time k. The sets Xk are discussed in detail in the next section. Since the
functions fk(x(k)) are continuous, the use of polyhedral partitions rather
than strict polyhedral partitions (Definition 3.5) will not cause any problem,
indeed it will simplify the exposition.

In the rest of this chapter we will characterize the structure of the value
function and describe how the optimal control law can be efficiently computed
by means of multiparametric linear and quadratic programming. We will
distinguish the cases 1- or ∞-norm and squared 2-norm.

10.3 Feasible Solutions

We denote with Xi the set of states xi at time i for which (10.28)–(10.32)
is feasible, for i = 0, . . . , N . The sets Xi for i = 0, . . . , N play an impor-
tant role in the the solution of (10.32). They are independent of the cost
function (as long as it guarantees the existence of a minimum) and of the
algorithm used to compute the solution to problem (10.32). There are two
ways to rigourously define and compute the sets Xi: the batch approach and
the recursive approach. In the batch approach

Xi = {xi ∈ X : ∃(ui, . . . , uN−1) such that xk ∈ X , uk ∈ U , k = i, . . . , N − 1, xN ∈ Xf

where xk+1 = Axk + Buk, k = i, . . . , N − 1},
(10.39)

The definition of Xi in (10.39) requires that for any initial state xi ∈ Xi there
exists a feasible sequence of inputs Ui , [u′

i, . . . , u
′
N−1] which keeps the state

evolution in the feasible set X at future time instants k = i + 1, . . . , N − 1
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and forces xN into Xf at time N . Clearly XN = Xf . Next we show how to
compute Xi for i = 0, . . . , N − 1. Let the state and input constraint sets X ,
Xf and U be the H-polyhedra Axx ≤ bx, Afx ≤ bf , Auu ≤ bu, respectively.
Define the polyhedron Pi for i = 0, . . . , N − 1 as follows

Pi = {(Ui, xi) ∈ Rm(N−i)+n : GiUi − Eixi ≤Wi} (10.40)

where Gi, Ei and Wi are defined as follows

Gi =




Au 0 . . . 0
0 Au . . . 0
...

...
...

...
0 0 . . . Au

0 0 . . . 0
AxB 0 . . . 0
AxAB AxB . . . 0
...

...
...

...
AfAN−i−1B AxAN−i−2B . . . AxB




, Ei =




0
0
...
0
−Ax

−AxA
−AxA2

...
−AfAN−i




, Wi =




bu

bu

...
bu

bx

bx

bx

...
bf




(10.41)
The set Xi is a polyhedron as it is the projection of the polyhedron Pi

in (10.40)-(10.41) on the xi space.
In the recursive approach,

Xi = {x ∈ X : ∃u ∈ U such that Ax + Bu ∈ Xi+1 },
i = 0, . . . , N − 1

XN = Xf . (10.42)

The definition of Xi in (10.42) is recursive and requires that for any feasible
initial state xi ∈ Xi there exists a feasible input ui which keeps the next state
Axi + Bui in the feasible set Xi+1. It can be compactly written as

Xi = Pre(Xi+1) ∩ X (10.43)

Initializing XN to Xf and solving (10.42) backward in time yields the same
sets Xi as the batch approach. This recursive method, however, leads to an
alternative approach for computing the sets Xi. Let Xi be the H-polyhedra
AXix ≤ bXi . Then the set Xi−1 is the projection of the following polyhedron




Au

0
AXiB


ui +




0
Ax

AXiA


xi ≤




bu

bx

bXi


 (10.44)

on the xi space.
Consider problem (10.32). The set X0 is the set of all initial states x0 for

which (10.32) is feasible. The sets Xi with i = 1, . . . , N − 1 are somehow
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hidden. A given Ū0 = [ū0, . . . , ūN−1] is feasible for problem (10.32) if and
only if at all time instants i, the state xi obtained by applying ū0, . . . , ūi−1

to the system model xk+1 = Axk +Buk with initial state x0 ∈ X0 belongs to
Xi. Also, Xi is the set of feasible initial states for problem

J∗
i (x(0)) = minUi p(xN ) +

∑N−1
k=i q(xk, uk)

subj. to xk+1 = Axk + Buk, k = i, . . . , N − 1
xk ∈ X , uk ∈ U , k = i, . . . , N − 1
xN ∈ Xf

(10.45)

Next, we provide more insights into the set Xi by using the invariant set
theory of Section 10.1. We consider two cases: (1) Xf = X which corresponds
to effectively “remove” the terminal constraint set and (2) Xf chosen to be
a control invariant set.

Theorem 10.2. [158, Theorem 5.3]. Let the terminal constraint set Xf be
equal to X . Then,

1. The feasible set Xi, i = 0, . . . , N−1 is equal to the (N−i)-step controllable
set:

Xi = KN−i(X )

2. The feasible set Xi, i = 0, . . . , N −1 contains the maximal control invari-
ant set:

C∞ ⊆ Xi

3. The feasible set Xi is control invariant if and only if the maximal control
invariant set is finitely determined and N − i is equal to or greater than
its determinedness index N̄ , i.e.

Xi ⊆ Pre(Xi)⇔ C∞ = KN−i(X ) for all i ≤ N − N̄

4. Xi ⊆ Xj if i < j for i = 0, . . . , N − 1. The size of the feasible set Xi stops
decreasing (with decreasing i) if and only if the maximal control invariant
set is finitely determined and N−i is larger than its determinedness index,
i.e.

Xi ⊂ Xj if N − N̄ < i < j < N

Furthermore,
Xi = C∞ if i ≤ N − N̄

Theorem 10.3. [158, Theorem 5.4]. Let the terminal constraint set Xf be a
control invariant subset of X . Then,

1. The feasible set Xi, i = 0, . . . , N−1 is equal to the (N−i)-step stabilizable
set:

Xi = KN−i(Xf )

2. The feasible set Xi, i = 0, . . . , N − 1 is control invariant and contained
within the maximal control invariant set:
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Xi ⊆ C∞

3. Xi ⊇ Xj if i < j, i = 0, . . . , N − 1. The size of the feasible Xi set stops
increasing (with decreasing i) if and only if the maximal stabilizable set
is finitely determined and N − i is larger than its determinedness index,
i.e.

Xi ⊃ Xj if N − N̄ < i < j < N

Furthermore,
Xi = K∞(Xf ) if i ≤ N − N̄

Remark 10.8. Theorems 10.2 and 10.3 help us understand how the feasible
sets Xi propagate backward in time as a function of the terminal set Xf .
In particular, when Xf = X the set Xi shrinks as i becomes smaller and
stops shrinking when it becomes the maximal control invariant set. Also,
depending on i, either it is not a control invariant set or it is the maximal
control invariant set. We have the opposite if a control invariant set is chosen
as terminal constraint Xf . The set Xi grows as i becomes smaller and stops
growing when it becomes the maximal stabilizable set. Both cases are shown
in the Example 10.6 below.

Remark 10.9. In this section we investigated the behavior of Xi as i varies
for a fixed horizon N . Equivalently, we could study the behavior of X0 as the
horizon N varies. Specifically, the sets X0→N1 and X0→N2 with N2 > N1 are
equal to the sets XN2−N1→N and X0→N , respectively, with N = N2.

Example 10.6. Consider the double integrator





x(t + 1) =

[
1 1
0 1

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
1 0
]
x(t)

(10.46)

subject to the input constraints

− 1 ≤ u(k) ≤ 1 for all k ≥ 0 (10.47)

and the state constraints
[
−5
−5

]
≤ x(k) ≤

[
5
5

]
for all k ≥ 0 (10.48)

We compute the feasible sets Xi and plot them in Figure 10.7 in two cases.

Case 1. Xf is the control invariant set




−0.32132 −0.94697
0.32132 0.94697

1 0
−1 0


x ≤




0.3806
0.3806

2.5
2.5


 (10.49)
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After six iterations the sets Xi converge to the following K∞(Xf )




−0.44721 −0.89443
−0.24254 −0.97014
−0.31623 −0.94868
0.24254 0.97014
0.31623 0.94868
0.44721 0.89443

1 0
−1 0

0.70711 0.70711
−0.70711 −0.70711




x ≤




2.6833
2.6679
2.5298
2.6679
2.5298
2.6833

5
5

3.5355
3.5355




(10.50)

Note that in this case C∞ = K∞(Xf ) and the determinedness index is six.
Case 2. Xf = X . After six iterations the sets Xi converge to K∞(Xf )
in (10.50).
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4
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 x
1

 x
2

(a) Case 1: Xf = control invari-
ant set in (10.49)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

 x
1

 x
2

(b) Case 2: Xf = X

Fig. 10.7 Example 10.6: Propagation of the feasible sets Xi

10.4 State Feedback Solution, 2-Norm Case

Consider Problem (10.32) with J0(·) defined by (10.31). In this chapter we
always assume that Q = Q′ � 0, R = R′ ≻ 0, P = P ′ � 0.
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J∗
0 (x(0)) = minU0 J0(x(0), U0) = x′

NPxN +

N−1∑

k=0

x′
kQxk + u′

kRuk

subj. to xk+1 = Axk + Buk, k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0)

(10.51)

10.4.1 Solution via Batch Approach

As shown in Section 8.1, Problem (10.51) can be rewritten as

J∗
0 (x(0)) = min

U0

J0(x(0), U0) = U ′
0HU0 + 2x′(0)FU0 + x′(0)Y x(0)

= min
U0

J0(x(0), U0) = [U ′
0 x′(0)]

[
H F ′

F Y

]
[U0

′ x(0)′]′

subj. to G0U0 ≤W0 + E0x(0)
(10.52)

with G0, W0 and E0 defined in (10.41) for i = 0 and H ,F , Y defined in (8.8).
As J0(x(0), U0) ≥ 0 by definition it follows that

[
H F ′

F Y

]
� 0. Note that the

optimizer U∗
0 is independent of the term involving Y in (10.52).

We view x(0) as a vector of parameters and our goal is to solve (10.52) for
all values of x(0) ∈ X0 and to make this dependence explicit. The computa-
tion of the set X0 of initial states for which problem (10.52) is feasible was
discussed in Section 10.3.

Before proceeding further, it is convenient to define

z , U0 + H−1F ′x(0) (10.53)

z ∈ Rs, remove x(0)′Y x(0) and to transform (10.52) to obtain the equivalent
problem

Ĵ∗(x(0)) = min
z

z′Hz

subj. to G0z ≤W0 + S0x(0),
(10.54)

where S0 , E0+G0H
−1F ′, and Ĵ∗(x(0)) = J∗

0 (x(0))−x(0)′(Y−FH−1F ′)x(0).
In the transformed problem the parameter vector x(0) appears only on the
rhs of the constraints.

Problem (10.54) is a multiparametric quadratic program that can be
solved by using the algorithm described in Section 6.3.1. Once the multi-
parametric problem (10.54) has been solved, the solution U∗

0 = U∗
0 (x(0)) of

CFTOC (10.51) and therefore u∗(0) = u∗(x(0)) is available explicitly as a
function of the initial state x(0) for all x(0) ∈ X0.

Theorem 6.6 states that the solution z∗(x(0)) of the mp-QP problem (10.54)
is a continuous and piecewise affine function on polyhedra of x(0). Clearly
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the same properties are inherited by the controller. The following corollaries
of Theorem 6.6 establish the analytical properties of the optimal control law
and of the value function.

Corollary 10.1. The control law u∗(0) = f0(x(0)), f0 : Rn → Rm, obtained
as a solution of the CFTOC (10.51) is continuous and piecewise affine on
polyhedra

f0(x) = F j
0 x + gj

0 if x ∈ CRj
0, j = 1, . . . , N r

0 (10.55)

where the polyhedral sets CRj
0 = {x ∈ Rn|Hj

0x ≤ Kj
0}, j = 1, . . . , N r

0 are a
partition of the feasible polyhedron X0.

Proof: From (10.53) U∗
0 (x(0)) = z∗(x(0)) − H−1F ′x(0). From Theo-

rem 6.6 we know that z∗(x(0)), solution of (10.54), is PPWA and continuous.
As U∗

0 (x(0)) is a linear combination of a linear function and a PPWA func-
tion, it is PPWA. As U∗

0 (x(0)) is a linear combination of two continuous
functions it is continuous. In particular, these properties hold for the first
component u∗(0) of U∗

0 . 2

Remark 10.10. Note that, as discussed in Remark 6.9, the critical regions
defined in (6.4) are in general sets that are neither closed nor open. In Corol-
lary 10.1 the polyhedron CRi

0 describes the closure of a critical region. The
function f0(x) is continuous and therefore it is simpler to use a polyhedral
partition rather than a strict polyhedral partition.

Corollary 10.2. The value function J∗
0 (x(0)) obtained as solution of the

CFTOC (10.51) is convex and piecewise quadratic on polyhedra. Moreover,
if the mp-QP problem (10.54) is not degenerate, then the value function
J∗

0 (x(0)) is C(1).

Proof: By Theorem 6.6 Ĵ∗(x(0)) is a a convex function of x(0). As[
H F ′

F Y

]
� 0, its Schur complement Y − FH−1F ′ � 0, and therefore

J∗
0 (x(0)) = Ĵ∗(x(0)) + x(0)′(Y − FH−1F ′)x(0) is a convex function, be-

cause it is the sum of convex functions. If the mp-QP problem (10.54) is not
degenerate, then Theorem 6.9 implies that Ĵ∗(x(0)) is a C(1) function of x(0)
and therefore J∗

0 (x(0)) is a C(1) function of x(0). The results of Corollary 10.1
imply that J∗

0 (x(0)) is piecewise quadratic. 2

Remark 10.11. The relation between the design parameters of the optimal
control problem (10.51) and the degeneracy of the mp-QP problem (10.54)
is complex, in general.

The solution of the multiparametric problem (10.54) provides the state
feedback solution u∗(k) = fk(x(k)) of CFTOC (10.51) for k = 0 and it also
provides the open-loop optimal control laws u∗(k) as function of the initial
state, i.e., u∗(k) = u∗(k, x(0)). The state feedback PPWA optimal controllers
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u∗(k) = fk(x(k)) with fk : Xk 7→ U for k = 1, . . . , N are computed in the
following way. Consider the same CFTOC (10.51) over the shortened time-
horizon [i, N ]

minUi x′
NPxN +

N−1∑

k=i

x′
kQxk + u′

kRuk

subj. to xk+1 = Axk + Buk, k = i, . . . , N − 1
xk ∈ X , uk ∈ U , k = i, . . . , N − 1
xN ∈ Xf

xi = x(i)

(10.56)

where Ui , [u′
i, . . . , u

′
N−1]. As defined in (10.39) and discussed in Section 10.3,

Xi ⊆ Rn is the set of initial states x(i) for which the optimal control prob-
lem (10.56) is feasible. We denote by U∗

i the optimizer of the optimal control
problem (10.56).

Problem (10.56) can be translated into the mp-QP

min Ui
′HiUi + 2x′(i)FiUi + x′(i)Yix(i)

subj. to GiUi ≤Wi + Eix(i).

(10.57)

where Hi = H ′
i ≻ 0, Fi, Yi are appropriately defined for each i and Gi, Wi, Ei

are defined in (10.41). The first component of the multiparametric solution
of (10.57) has the form

u∗
i (x(i)) = fi(x(i)), ∀x(i) ∈ Xi, (10.58)

where the control law fi : Rn → Rm, is continuous and PPWA

fi(x) = F j
i x + gj

i if x ∈ CRj
i , j = 1, . . . , N r

i (10.59)

and where the polyhedral sets CRj
i = {x ∈ Rn|Hj

i x ≤ Kj
i }, j = 1, . . . , Nr

i

are a partition of the feasible polyhedron Xi. Therefore the feedback solu-
tion u∗(k) = fk(x(k)), k = 0, . . . , N − 1 of the CFTOC (10.51) is obtained
by solving N mp-QP problems of decreasing size. The following corollary
summarizes the final result.

Corollary 10.3. The state-feedback control law u∗(k) = fk(x(k)), fk : Xk ⊆
Rn → U ⊆ Rm, obtained as a solution of the CFTOC (10.51) and k =
0, . . . , N − 1 is time-varying, continuous and piecewise affine on polyhedra

fk(x) = F j
kx + gj

k if x ∈ CRj
k, j = 1, . . . , Nr

k (10.60)

where the polyhedral sets CRj
k = {x ∈ Rn : Hj

kx ≤ Kj
k}, j = 1, . . . , N r

k are
a partition of the feasible polyhedron Xk.
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10.4.2 Solution via Recursive Approach

Consider the dynamic programming formulation of the CFTOC (10.51)

J∗
j (xj) , min

uj

x′
jQxj + u′

jRuj + J∗
j+1(Axj + Buj)

subj. to xj ∈ X , uj ∈ U ,
Axj + Buj ∈ Xj+1

(10.61)

for j = 0, . . . , N − 1, with boundary conditions

J∗
N (xN ) = x′

NPxN (10.62)

XN = Xf , (10.63)

where Xj denotes the set of states x for which the CFTOC (10.51) is feasible
at time j (as defined in (10.39)). Note that according to Corollary 10.2,
J∗

j+1(Axj + Buj) is piecewise quadratic for j < N − 1. Therefore (10.61)
is not simply an mp-QP and, contrary to the unconstrained case (Section
8.1), the computational advantage of the iterative over the batch approach
is not obvious. Nevertheless an algorithm was developed and can be found in
Section 15.6.

10.4.3 Infinite Horizon Problem

Assume Q ≻ 0, R ≻ 0 and that the constraint sets X and U contain the ori-
gin in their interior1. Consider the following infinite-horizon linear quadratic
regulation problem with constraints (CLQR)

J∗
∞(x(0)) = minu0,u1,...

∞∑

k=0

x′
kQxk + u′

kRuk

subj. to xk+1 = Axk + Buk, k = 0, . . . ,∞
xk ∈ X , uk ∈ U , k = 0, . . . ,∞
x0 = x(0)

(10.64)

and the set

X∞ = {x(0) ∈ Rn| Problem (10.64) is feasible and J∗
∞(x(0)) < +∞}

(10.65)
Because Q ≻ 0, R ≻ 0 any optimizer u∗

k of problem (10.64) must converge
to the origin (u∗

k → 0) and so must the state trajectory resulting from the
application of u∗

k (x∗
k → 0). Thus the origin x = 0, u = 0 must lie in the

1 As in the unconstrained case, the assumption Q ≻ 0 can be relaxed by requiring
that (Q1/2, A) is an observable pair (Section 8.4)
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interior of the constraint set (X ,U) (if the origin were not contained in the
constraint set then J∗

∞(x(0)) would be infinite). For this reason, the set X∞
in (10.65) is the maximal stabilizable set K∞(O) of system (10.24) subject
to the constraints (10.25) with O being the origin 0 (Definition 10.8).

If the initial state x0 = x(0) is sufficiently close to the origin, then the
constraints will never become active and the solution of Problem (10.64) will
yield the unconstrained LQR (8.32). More formally we can define a corre-
sponding invariant set around the origin.

Definition 10.10 (Maximal LQR Invariant Set OLQR
∞ ). Consider the

system x(k+1) = Ax(k)+Bu(k). OLQR
∞ ⊆ Rn denotes the maximal positively

invariant set for the autonomous constrained linear system:

x(k + 1) = (A + BF∞)x(k), x(k) ∈ X , u(k) ∈ U , ∀ k ≥ 0

where u(k) = F∞x(k) is the unconstrained LQR control law (8.32) obtained
from the solution of the ARE (8.31).

Therefore, from the previous discussion, there is some finite time N̄(x0),
depending on the initial state x0, at which the state enters OLQR

∞ and after
which the system evolves in an unconstrained manner (x∗

k ∈ X , u∗
k ∈ U ,

∀k > N̄). This consideration allows us to split Problem (10.64) into two
parts by using the dynamic programming principle, one up to time k = N̄
where the constraints may be active and one for longer times k > N̄ where
there are no constraints.

J∗
∞(x(0)) = minu0,u1,...

N̄−1∑

k=0

x′
kQxk + u′

kRuk + J∗
N̄→∞(xN̄ )

subj. to xk ∈ X , uk ∈ U , k = 0, . . . , N̄ − 1
xk+1 = Axk + Buk, k ≥ 0
x0 = x(0).

(10.66)

where

J∗
N̄→∞(xN̄ ) = minuN̄ ,uN̄+1,...

∞∑

k=N̄

x′
kQxk + u′

kRuk

subj. to xk+1 = Axk + Buk, k ≥ N̄

= x′
N̄

P∞xN̄

(10.67)

This key insight due to Sznaier and Damborg [246] is formulated precisely in
the following.

Theorem 10.4 (Equality of Finite and Infinite Optimal Control,
[233]). For any given initial state x(0), the solution to (10.66, 10.67) is equal
to the infinite-time solution of (10.64), if the terminal state xN̄ of (10.66) lies
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in the positive invariant set OLQR
∞ and no terminal set constraint is applied

in (10.66), i.e. the state ‘voluntarily’ enters the set OLQR
∞ after N̄ steps.

Theorem 10.4 suggests to obtain the infinite horizon constrained linear
quadratic regulator CLQR by solving the finite horizon problem for a hori-
zon of N̄ with a terminal weight of P = P∞ and no terminal constraint.
The critical question of how to determine N̄(x0) or at least an upper bound
was studied by several researchers. Chmielewski and Manousiouthakis [79]
presented an approach that provides a conservative estimate Nest of the fi-
nite horizon N̄(x0) for all x0 belonging to a compact set of initial conditions
S ⊆ X∞ = K∞(0) (Nest ≥ N̄S(x0), ∀x0 ∈ S). They solve a single, finite
dimensional, convex program to obtain Nest. Their estimate can be used
to compute the PWA solution of (10.66) for a particular set S. Alterna-
tively, the quadratic program with horizon Nest can be solved to determine
u∗

0, u∗
1, . . . , u

∗
Nest

for a particular x(0) ∈ S. For a given initial state x(0),
rather then a set S, Scokaert and Rawlings [233] presented an algorithm
that attempts to identify N̄(x(0)) iteratively. In summary we can state the
following Theorem.

Theorem 10.5 (Explicit solution of CLQR). Assume that (A, B) is a
stabilizable pair and (Q1/2, A) is an observable pair, R ≻ 0. The state-feedback
solution to the CLQR problem (10.64) in a compact set of the initial condi-
tions S ⊆ X∞ = K∞(0) is time-invariant, continuous and piecewise affine
on polyhedra

u∗(k) = f∞(x(k)), f∞(x) = F jx + gj if x ∈ CRj
∞, j = 1, . . . , Nr

∞
(10.68)

where the polyhedral sets CRj
∞ = {x ∈ Rn : Hjx ≤ Kj}, j = 1, . . . , N r

∞ are
a finite partition of the feasible compact polyhedron S ⊆ X∞.

As discussed previously, the complexity of the solution manifested by the
number of polyhedral regions depends on the chosen horizon. As the various
discussed techniques yield an Nest that may be too large by orders of mag-
nitude this is not a viable proposition. An efficient algorithm for computing
the PPWA solution to the CLQR problem is presented next.

10.4.4 CLQR Algorithm

In this section we will sketch an efficient algorithm to compute the PWA
solution to the CLQR problem in (10.64) for a given set S of initial conditions.
Details are available in [123, 124]. As a side product, the algorithm also
computes N̄S , the shortest horizon N̄ for which the problem (10.66), (10.67)
is equivalent to the infinite horizon problem (10.64).

The idea is as follows. For the CFTOC problem (10.51) with a horizon N
with no terminal constraint (Xf = Rn) and terminal cost P = P∞, where P∞
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is the solution to the ARE (8.31), we solve an mp-QP and obtain the PWA
control law. From Theorem 10.4 we can conclude that for all states which en-
ter the invariant set OLQR

∞ introduced in Definition 10.10 with the computed
control law in N steps, the infinite-horizon problem has been solved. For
these states, which we can identify via a reachability analysis, the computed
feedback law is infinite-horizon optimal.

In more detail, we start the procedure by computing the Maximal LQR
Invariant Set OLQR

∞ introduced in Definition 10.10, the polyhedron P0 ,
OLQR

∞ = {x ∈ Rn|H0x ≤ K0}. Figure 10.8(a) depicts OLQR
∞ . Then, the
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Fig. 10.8 CLQR Algorithm: Region Exploration

algorithm finds a point x̄ by stepping over a facet of OLQR
∞ with a small

step ǫ, as described in [18]. If (10.51) is feasible for horizon N = 1 (terminal
set constraint Xf = Rn, terminal cost P = P∞ and x(0) = x̄), the active
constraints will define the neighboring polyhedron P1 = {x ∈ Rn|H1x ≤ K1}
(x̄ ∈ P1, see Figure 10.8(b)) [39]. By Theorem 10.4, the finite time optimal
solution computed above equals the infinite-time optimal solution if x1 ∈
OLQR

∞ . Therefore we extract from P1 the set of points that will enter OLQR
∞

in N = 1 time-steps, provided that the optimal control law associated with
P1 (i.e., U∗

1 = F1x(0)+G1) is applied. The Infinite-Time Polyhedron (IT P1
1)

is therefore defined by the intersection of the following two polyhedra:

x1 ∈ OLQR
∞ , x1 = Ax0 + BU∗

1 , (10.69a)

x0 ∈ P1 (10.69b)

Equation (10.69a) is the reachability constraint and (10.69b) defines the set
of states for which the computed feedback law is feasible and optimal over
N = 1 steps (see [39] for details). The intersection is the set of points for
which the control law is infinite-time optimal.
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A general step r of the algorithm involves stepping over a facet to a new
point x̄ and determining the polyhedron Pr and the associated control law
(U∗

N = Frx(0) + Gr) from (10.51) with horizon N. Then we extract from
Pr the set of points that will enter OLQR

∞ in N time-steps, provided that
the optimal control law associated with Pr is applied. The Infinite-Time
Polyhedron (IT PN

r ) is therefore defined by the intersection of the following
two polyhedra:

xN ∈ OLQR
∞ (10.70a)

x0 ∈ Pr (10.70b)

This intersection is the set of points for which the control law is infinite-time
optimal. Note that, as for x1 in the one-step case, xN in (10.70a) can be
described as a linear function of x0 by substituting the feedback sequence
U∗

N = Frx0 + Gr into the LTI system dynamics (10.24).
We continue exploring the facets increasing N when necessary. The algo-

rithm terminates when we have covered S or when we can no longer find a
new feasible polyhedron Pr. The following theorem shows that the algorithm
also provides the horizon N̄S for compact sets. Exact knowledge of N̄S can
serve to improve the performance of a wide array of algorithms presented in
the literature.

Theorem 10.6 (Exact Computation of N̄S , [123, 124]). If we explore
any given compact set S with the proposed algorithm, the largest resulting
horizon is equal to N̄S , i.e.,

N̄S = max
IT PN

r r=0,...,R
N

For certain classes of problems the proposed algorithm is more efficient
than standard multi-parametric solvers, even if finite horizon optimal con-
trollers are sought. The initial polyhedral representation Pr contains redun-
dant constraints which need to be removed in order to obtain a minimal
representation of the controller region. The intersection with the reachability
constraint, as proposed here, can simplify this constraint removal.

10.4.5 Examples

Example 10.7. Consider the double integrator (10.46). We want to compute
the state feedback optimal controller that solves problem (10.51) with N = 6,
Q = [ 1 0

0 1 ], R = 0.1, P is equal to the solution of the Riccati equation (8.31),
Xf = R2. The input constraints are

− 1 ≤ u(k) ≤ 1, k = 0, . . . , 5 (10.71)



192 10 Constrained Optimal Control

and the state constraints
[
−10
−10

]
≤ x(k) ≤

[
10
10

]
, k = 0, . . . , 5 (10.72)

This task is addressed as shown in Section (10.4.1). The feedback optimal
solution u∗(0), . . . , u∗(5) is computed by solving six mp-QP problems and
the corresponding polyhedral partitions of the state-space are depicted in
Fig. 10.9. Only the last two optimal control moves are reported below:

u∗(5) =





[−0.58 −1.55 ] x(5) if

[−0.35 −0.94
0.35 0.94
1.00 0.00
−1.00 0.00

]
x(5) ≤

[
0.61
0.61
10.00
10.00

]
(Region #1)

1.00 if

[
0.35 0.94
0.00 −1.00
−0.71 −0.71
1.00 0.00
−1.00 0.00

]
x(5) ≤

[−0.61
10.00
7.07
10.00
10.00

]
(Region #2)

− 1.00 if

[−0.35 −0.94
1.00 0.00
0.00 1.00
−1.00 0.00
0.71 0.71

]
x(5) ≤

[−0.61
10.00
10.00
10.00
7.07

]
(Region #3)
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u∗(4) =





[−0.58 −1.55 ] x(4) if

[−0.35 −0.94
0.35 0.94
−0.77 −0.64
0.77 0.64

]
x(4) ≤

[
0.61
0.61
2.43
2.43

]
(Region #1)

1.00 if




0.29 0.96
0.00 −1.00
−0.71 −0.71
−0.45 −0.89
1.00 0.00
−1.00 0.00


x(4) ≤




−0.98
10.00
7.07
4.92
10.00
10.00


 (Region #2)

1.00 if




0.29 0.96
0.35 0.94
0.00 −1.00
−0.71 −0.71
−0.45 −0.89
1.00 0.00
−1.00 0.00


x(4) ≤




−0.37
−0.61
10.00
7.07
4.92
10.00
10.00


 (Region #3)

− 1.00 if




−0.29 −0.96
1.00 0.00
0.00 1.00
−1.00 0.00
0.71 0.71
0.45 0.89


x(4) ≤




−0.98
10.00
10.00
10.00
7.07
4.92


 (Region #4)

− 1.00 if




−0.29 −0.96
−0.35 −0.94
1.00 0.00
0.00 1.00
−1.00 0.00
0.71 0.71
0.45 0.89


x(4) ≤




−0.37
−0.61
10.00
10.00
10.00
7.07
4.92


 (Region #5)

[−0.44 −1.43 ] x(4)− 0.46 if

[−0.29 −0.96
0.29 0.96
−0.77 −0.64
1.00 0.00

]
x(4) ≤

[
0.98
0.37
−2.43
10.00

]
(Region #6)

[−0.44 −1.43 ] x(4) + 0.46 if

[−0.29 −0.96
0.29 0.96
0.77 0.64
−1.00 0.00

]
x(4) ≤

[
0.37
0.98
−2.43
10.00

]
(Region #7)

Note that by increasing the horizon N , the control law changes only far
away from the origin, the larger N the more in the periphery. This must be
expected from the results of Section 10.4.3. The control law does not change
anymore with increasing N in the set where the CFTOC law becomes equal to
the constrained infinite-horizon linear quadratic regulator (CLQR) problem.
This set gets larger as N increases [79, 233].

Example 10.8. The infinite-time CLQR (10.64) was determined for Exam-
ple 10.7 by using the approach presented in Section 10.4.3. The resulting N̄S
is 12. The state-space is divided into 117 polyhedral regions and is depicted
in Fig. 10.10(a). In Fig. 10.10(b) the same control law is represented where
polyhedra with the same affine control law were merged.



194 10 Constrained Optimal Control

10.5 State Feedback Solution, 1-Norm and ∞-Norm

Case

We are considering problem (10.32) with J0(·) defined by (10.30) with p = 1
or p = ∞. In the following section we will concentrate on the ∞-norm, the
results can be extended easily to cost functions with 1-norm or mixed 1/∞
norms.

J∗
0 (x(0)) = minU0 J0(x(0), U0) = ‖PxN‖p +

N−1∑

k=0

‖Qxk‖p + ‖Ruk‖p

subj. to xk+1 = Axk + Buk, k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0)
(10.73)

10.5.1 Batch Approach

The optimal control problem (10.73) with p = ∞ can be rewritten as a
linear program by using the standard approach (see e.g. [72]) presented in
Section 9.1. Therefore, problem (10.73) can be reformulated as the following
LP problem
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min
z0

εx
0 + . . . + εx

N + εu
0 + . . . + εu

N−1 (10.74a)

subj. to −1nεx
k ≤ ±Q


Akx0 +

k−1∑

j=0

AjBuk−1−j


 , (10.74b)

−1rε
x
N ≤ ±P


ANx0 +

N−1∑

j=0

AjBuN−1−j


 , (10.74c)

−1mεu
k ≤ ±Ruk, (10.74d)

Akx0 +

k−1∑

j=0

AjBuk−1−j ∈ X , uk ∈ U , (10.74e)

ANx0 +

N−1∑

j=0

AjBuN−1−j ∈ Xf , (10.74f)

k = 0, . . . , N − 1

x0 = x(0) (10.74g)

where constraints (10.74b)–(10.74f) are componentwise, and ± means that
the constraint appears once with each sign. Problem (10.74) can be rewritten
in the more compact form

min
z0

c′0z0

subj. to Ḡ0z0 ≤ W̄0 + S̄0x(0)
(10.75)

where z0 , {εx
0 , . . . , εx

N , εu
0 , . . . , εu

N−1, u
′
0, . . . , u

′
N−1} ∈ Rs, s , (m + 1)N +

N + 1 and

Ḡ0 =

[
Gε 0
0 G0

]
, S̄0 =

[
Sε

S0

]
, W̄0 =

[
Wε

W0

]
(10.76)

Vector c0 and the submatrices Gǫ, Wǫ, Sǫ associated with the constraints (10.74b)-
(10.74d) are defined in (9.10). The matrices G0, W0 and E0 are defined
in (10.41) for i = 0.
As in the 2-norm case, by treating x(0) as a vector of parameters, Prob-
lem (10.75) becomes a multiparametric linear program (mp-LP) that can be
solved as described in Section 6.2. Once the multiparametric problem (10.74)
has been solved, the explicit solution z∗0(x(0)) of (10.75) is available as a
piecewise affine function of x(0), and the optimal control law u∗(0) is also
available explicitly, as the optimal input u∗(0) consists simply of m compo-
nents of z∗0(x(0))

u∗(0) = [0 . . . 0 Im 0 . . . 0]z∗0(x(0)). (10.77)
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Theorem 6.4 states that there always exists a continuous PPWA solution
z∗0(x) of the mp-LP problem (10.75). Clearly the same properties are inherited
by the controller. The following Corollaries of Theorem 6.4 summarize the
analytical properties of the optimal control law and of the value function.

Corollary 10.4. There exists a control law u∗(0) = f0(x(0)), f0 : Rn → Rm,
obtained as a solution of the CFTOC (10.73) with p = 1 or p =∞, which is
continuous and PPWA

f0(x) = F j
0 x + gj

0 if x ∈ CRj
0, j = 1, . . . , N r

0 (10.78)

where the polyhedral sets CRj
0 , {Hj

0x ≤ kj
0}, j = 1, . . . , N r

0 , are a partition
of the feasible set X0.

Corollary 10.5. The value function J∗(x) obtained as a solution of the
CFTOC (10.73) is convex and PPWA.

Remark 10.12. Note that if the optimizer of problem (10.73) is unique for all
x(0) ∈ X0, then Corollary 10.4 reads: “ The control law u∗(0) = f0(x(0)),
f0 : Rn → Rm, obtained as a solution of the CFTOC (10.73) with p = 1 or
p = ∞, is continuous and PPWA,. . .”. From the results of Section 6.2 we
know that in case of multiple optimizers for some x(0) ∈ X0, a control law of
the form (10.78) can always be computed.

The multiparametric solution of (10.75) provides the open-loop optimal
sequence u∗(0), . . . , u∗(N − 1) as an affine function of the initial state x(0).
The state feedback PPWA optimal controllers u∗(k) = fk(x(k)) with fk :
Xk 7→ U for k = 1, . . . , N are computed in the following way. Consider the
same CFTOC (10.73) over the shortened time horizon [i, N ]

minUi ‖PxN‖p +
N−1∑

k=i

‖Qxk‖p + ‖Ruk‖p

subj. to xk+1 = Axk + Buk, k = i, . . . , N − 1
xk ∈ X , uk ∈ U , k = i, . . . , N − 1
xN ∈ Xf

xi = x(i)

(10.79)

where Ui , [u′
i, . . . , u

′
N−1] and p = 1 or p = ∞. As defined in (10.39) and

discussed in Section 10.3, Xi ⊆ Rn is the set of initial states x(i) for which
the optimal control problem (10.79) is feasible. We denote by U∗

i one of the
optimizers of the optimal control problem (10.79).

Problem (10.79) can be translated into the mp-LP

min
zi

c′izi

subj. to Ḡizi ≤ W̄i + S̄ix(i)
(10.80)
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where zi , {εx
i , . . . , εx

N , εu
i , . . . , εu

N−1, ui, . . . , uN−1} and ci, Ḡi, S̄i, W̄i, are
appropriately defined for each i. The component u∗

i of the multiparametric
solution of (10.80) has the form

u∗
i (x(i)) = fi(x(i)), ∀x(i) ∈ Xi, (10.81)

where the control law fi : Rn → Rm, is continuous and PPWA

fi(x) = F j
i x + gj

i if x ∈ CRj
i , j = 1, . . . , Nr

i (10.82)

and where the polyhedral sets CRj
i = {x ∈ Rn : Hj

i x ≤ Kj
i }, j = 1, . . . , N r

i

are a partition of the feasible polyhedron Xi. Therefore the feedback solution
u∗(k) = fk(x(k)), k = 0, . . . , N − 1 of the CFTOC (10.73) with p = 1 or
p = ∞ is obtained by solving N mp-LP problems of decreasing size. The
following corollary summarizes the final result.

Corollary 10.6. There exists a state-feedback control law u∗(k) = fk(x(k)),
fk : Xk ⊆ Rn → U ⊆ Rm, solution of the CFTOC (10.73) for p = 1 or p =∞
and k = 0, . . . , N − 1 which is time-varying, continuous and piecewise affine
on polyhedra

fk(x) = F j
kx + gj

k if x ∈ CRj
k, j = 1, . . . , N r

k (10.83)

where the polyhedral sets CRj
k = {x ∈ Rn : Hj

kx ≤ Kj
k}, j = 1, . . . , Nr

k are
a partition of the feasible polyhedron Xk.

10.5.2 Recursive Approach

Consider the dynamic programming formulation of (10.73) with J0(·) defined
by (10.30) with p = 1 or p =∞

J∗
j (xj) , minuj ‖Qxj‖p + ‖Ruj‖p + J∗

j+1(Axj + Buj)
subj. to xj ∈ X , uj ∈ U ,

Axj + Buj ∈ Xj+1

(10.84)

for j = 0, . . . , N − 1, with boundary conditions

J∗
N (xN ) = ‖PxN‖p (10.85)

XN = Xf , (10.86)

Unlike for the 2-norm case the dynamic program (10.84)-(10.86) can be solved
nicely and efficiently as explained in the next theorem.

Theorem 10.7. The state feedback piecewise affine solution (10.83) of the
CFTOC (10.73) for p = 1 or p = ∞ is obtained by solving the equa-
tions (10.84)-(10.86) via N mp-LPs.
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Proof: Consider the first step j = N−1 of dynamic programming (10.84)-
(10.86)

J∗
N−1(xN−1) , minuN−1 ‖QxN−1‖p + ‖RuN−1‖p + J∗

N (AxN−1 + BuN−1)
subj. to xN−1 ∈ X , uN−1 ∈ U ,

AxN−1 + BuN−1 ∈ Xf

(10.87)
J∗

N−1(xN−1), u∗
N−1(xN−1) and XN−1 are computable via the mp-LP:

J∗
N−1(xN−1) , minµ,uN−1 µ

subj. to µ ≥ ‖QxN−1‖p + ‖RuN−1‖p + ‖P (AxN−1 + BuN−1)‖p
xN−1 ∈ X , uN−1 ∈ U ,
AxN−1 + BuN−1 ∈ Xf

(10.88)
By Theorem 6.4, J∗

N−1 is a convex and piecewise affine function of xN−1, the
corresponding optimizer u∗

N−1 is piecewise affine and continuous, and the
feasible set XN−1 is a polyhedron. Without any loss of generality we assume
J∗

N−1 to be described as follows: J∗
N−1(xN−1) = maxi=1,...,nN−1{cixN−1 +di}

(see Section 4.1.5 for convex PPWA functions representation) where nN−1

is the number of affine components comprising the value function J∗
N−1. At

step j = N − 2 of dynamic programming (10.84)-(10.86) we have

J∗
N−2(xN−2) , minuN−2 ‖QxN−2‖p + ‖RuN−2‖p + J∗

N−1(AxN−2 + BuN−2)
subj. to xN−2 ∈ X , uN−2 ∈ U ,

AxN−2 + BuN−2 ∈ XN−1

(10.89)
Since J∗

N−1(x) is a convex and piecewise affine function of x, the prob-
lem (10.89) can be recast as the following mp-LP (see Section 4.1.5 for details)

J∗
N−2(xN−2) , minµ,uN−2 µ

subj. to µ ≥ ‖QxN−2‖p + ‖RuN−2‖p + ci(AxN−2 + BuN−2) + di,
i = 1, . . . , nN−1,
xN−2 ∈ X , uN−2 ∈ U ,
AxN−2 + BuN−2 ∈ XN−1

(10.90)
J∗

N−2(xN−2), u∗
N−2(xN−2) and XN−2 are computed by solving the mp-

LP (10.90). By Theorem 6.4, J∗
N−2 is a convex and piecewise affine function of

xN−2, the corresponding optimizer u∗
N−2 is piecewise affine and continuous,

and the feasible set XN−2 is a convex polyhedron.
The convexity and piecewise linearity of J∗

j and the polyhedra represen-
tation of Xj still hold for j = N − 3, . . . , 0 and the procedure can be iterated
backwards in time, proving the theorem. 2
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Consider the state feedback piecewise affine solution (10.83) of the CFTOC (10.73)
for p = 1 or p = ∞ and assume we are interested only in the optimal con-
troller at time 0. In this case, by using duality arguments we can solve the
equations (10.84)-(10.86) by using vertex enumerations and one mp-LP. This
is proven in the next theorem.

Theorem 10.8. The state feedback piecewise affine solution (10.83) at time
k = 0 of the CFTOC (10.73) for p = 1 or p = ∞ is obtained by solving the
equations (10.84)-(10.86) via one mp-LP.

Proof: Consider the first step j = N−1 of dynamic programming (10.84)-
(10.86)

J∗
N−1(xN−1) , minuN−1 ‖QxN−1‖p + ‖RuN−1‖p + J∗

N (AxN−1 + BuN−1)
subj. to xN−1 ∈ X , uN−1 ∈ U ,

AxN−1 + BuN−1 ∈ Xf

(10.91)
and the corresponding mp-LP:

J∗
N−1(xN−1) , minµ,uN−1 µ

subj. to µ ≥ ‖QxN−1‖p + ‖RuN−1‖p + ‖P (AxN−1 + BuN−1)‖p
xN−1 ∈ X , uN−1 ∈ U ,
AxN−1 + BuN−1 ∈ Xf

(10.92)
By Theorem 6.4, J∗

N−1 is a convex and piecewise affine function of xN−1, and
the feasible set XN−1 is a polyhedron. J∗

N−1 and XN−1 are computed without
explicitely solving the mp-LP (10.92). Rewrite problem (10.92) in the more
compact form

min
zN−1

c′N−1zN−1

subj. to ḠN−1zN−1 ≤ W̄N−1 + S̄N−1xN−1

(10.93)

where zN−1 = [µ, uN−1]. Consider the Linear Program dual of (10.93)

maxv −(W̄N−1 + S̄N−1xN−1)
′v

subj. to Ḡ′
N−1v = −cN−1

v ≥ 0
(10.94)

Consider the dual feasibility polyheron Pd = {v ≥ 0 : Ḡ′
N−1v = −cN−1}.

Let {V1, . . . , Vk} be the vertices of Pd and {y1, . . . , ye} be the rays of Pd.
Since in we have zero duality gap we have that

J∗
N−1(xN−1) = max

i=1,...,k
{−(W̄N−1 + S̄N−1xN−1)

′Vi}

i.e.,
J∗

N−1(xN−1) = max
i=1,...,k

{−(V ′
i S̄N−1)xN−1 − W̄ ′

N−1Vi}
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Recall that if the dual of a mp-LP is unbounded, then the primal is infeasible
(Theorem 6.2). For this reason the feasible set XN−1 is obtained by requiring
that the cost of (10.94) does not decrease in the direction of the rays:

XN−1 = {xN−1 : − (W̄N−1 + S̄N−1xN−1)
′yi ≤ 0, ∀ i = 1, . . . , e}

At this point the proof follows the one of Theorem 10.8 by iterating the
procedure backwards in time. One mp-LP will be required at step 0 in order
to compute u∗

0(x(0)). 2

10.5.3 Example

Example 10.9. Consider the double integrator system (10.46). We want to
compute the state feedback optimal controller that solves (10.73) with p =∞,

N = 4, P =

[
0 0
0 0

]
, Q =

[
1 1
0 1

]
, R = 0.8, subject to the input constraints

U = {u ∈ R : − 1 ≤ u ≤ 1} (10.95)

and the state constraints

X = {x ∈ R2 :

[
−10
−10

]
≤ x ≤

[
10
10

]
} (10.96)

and Xf = X . The optimal feedback solution u∗(0), . . . , u∗(3) was computed
by solving four mp-LP problems and the corresponding polyhedral partitions
of the state-space are depicted in Fig. 10.11, where polyhedra with the same
control law were merged. Only the last optimal control move is reported
below:
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u∗(5) =





0 if

[
0.45 0.89
1.00 0.00
−0.71 −0.71
−1.00 −0.00

]
x(5) ≤

[
0.00
0.00
7.07
10.00

]
(Region #1)

0 if

[−0.45 −0.89
−1.00 0.00
0.71 0.71
1.00 −0.00

]
x(5) ≤

[
0.00
0.00
7.07
10.00

]
(Region #2)

[−1.00 −2.00 ] x(5) if

[−0.45 −0.89
0.45 0.89
0.71 0.71
−1.00 −0.00

]
x(5) ≤

[
0.00
0.45
0.00
10.00

]
(Region #3)

[−1.00 −2.00 ] x(5) if

[−0.45 −0.89
0.45 0.89
−0.71 −0.71
1.00 −0.00

]
x(5) ≤

[
0.45
0.00
0.00
10.00

]
(Region #4)

[ 1.00 0.00 ] x(5) if

[−0.71 −0.71
−1.00 0.00
1.00 0.00
−0.00 1.00

]
x(5) ≤

[
0.00
1.00
0.00
10.00

]
(Region #5)

[ 1.00 0.00 ] x(5) if

[
0.71 0.71
−1.00 0.00
1.00 0.00
−0.00 −1.00

]
x(5) ≤

[
0.00
0.00
1.00
10.00

]
(Region #6)

1.00 if

[
0.45 0.89
−1.00 0.00
−0.00 −1.00
1.00 −0.00

]
x(5) ≤

[−0.45
−1.00
10.00
10.00

]
(Region #7)

− 1.00 if

[−0.45 −0.89
1.00 0.00
−1.00 −0.00
−0.00 1.00

]
x(5) ≤

[−0.45
−1.00
10.00
10.00

]
(Region #8)

(10.97)
Note that the controller (10.97) is piecewise linear around the origin. In fact,
the origin belongs to multiple regions (1 to 6). Note that the number N r

i of
regions is not always increasing with decreasing i (N r

5 = 8, N r
4 = 12, N r

3 = 12,
N r

2 = 26, N r
1 = 28, N r

0 = 26). This is due to the merging procedure, before
merging we have N r

5 = 12, N r
4 = 22, N r

3 = 40, N r
2 = 272, N r

1 = 108,
N r

0 = 152.

10.5.4 Infinite-Time Solution

Assume that Q and R have full column rank and that the constraint sets
X and U contain the origin in their interior. Consider the following infinite-
horizon problem with constraints
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J∗
∞(x(0)) = minu0,u1,...

∞∑

k=0

‖Qxk‖p + ‖Ruk‖p

subj. to xk+1 = Axk + Buk, k = 0, . . . ,∞
xk ∈ X , uk ∈ U , k = 0, . . . ,∞
x0 = x(0)

(10.98)

and the set

X∞ = {x(0) ∈ Rn| Problem (10.98) is feasible and J∗
∞(x(0)) < +∞}.

(10.99)
Because Q and R have full column rank, any optimizer u∗

k of problem (10.64)
must converge to the origin (u∗

k → 0) and so must the state trajectory result-
ing from the application of u∗

k (x∗
k → 0). Thus the origin x = 0, u = 0 must lie

in the interior of the constraint set (X ,U). (If the origin were not contained
in the constraint set then J∗

∞(x(0)) would be infinite.) Furthermore, if the
initial state x0 = x(0) is sufficiently close to the origin, then the state and in-
put constraints will never become active and the solution of Problem (10.64)
will yield the unconstrained optimal controller (9.31).

The discussion for the solution of the infinite horizon constrained linear
quadratic regulator (Section 10.4.3) by means of the batch approach can be
repeated here with one precaution. Since the unconstrained optimal controller
(if it exists) is PPWA the computation of the Maximal Invariant Set for the
autonomous constrained piecewise linear system is more involved and requires
algorithms which will be presented later in Chapter 15.

Differently from the 2-norm case, here the use of dynamic programming
for computing the infinite horizon solution is a viable alternative to the batch
approach. Convergence conditions of the dynamic programming strategy and
stability guarantees for the resulting possibly discontinuous closed-loop sys-
tem are given in [81]. A computationally efficient algorithm to obtain the
infinite time optimal solution, based on a dynamic programming exploration
strategy with a multi-parametric linear programming solver and basic poly-
hedral manipulations, is also presented in [81].

10.6 State-Feedback Solution, Minimum-Time Control

In this section we consider the solution of minimum-time optimal control
problems

J∗
0 (x(0)) = min

U0,N
N

subj. to xk+1 = Axk + Buk, k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0)

(10.100)
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where Xf ⊂ Rn is a terminal target set to be reached in minimum time.
We can find the controller that brings the states into Xf in one time step

by solving the following multiparametric program

min
u0

c(x0, u0)

subj. to x1 = Ax0 + Bu0

x0 ∈ X , u0 ∈ U
x1 ∈ Xf

(10.101)

where c(x0, u0) is any convex quadratic function. Let us assume that the

solution of the multiparametric program generates R1 regions {P1
r }R

1

r=1 with
the affine control law u0 = F 1

r x + G1
r in each region r. By construction we

have
X0 = K1(Xf )

Continuing setting up simple multiparametric programs bring the states into
Xf in 2, 3, . . . steps, we have for step j

min
u0

c(x0, u0)

subj. to x1 = Ax0 + Bu0

x0 ∈ X , u0 ∈ U
x1 ∈ Kj−1(Xf )

(10.102)

which yields Rj regions {Pj
r}R

j

r=1 with the affine control law u0 = F j
r x + Gj

r

in each region r. By construction we have

X0 = Kj(Xf )

Thus to obtain K1(Xf ), . . . ,KN (Xf ) we need to solve N multiparametric
programs with a prediction horizon of 1. Since the overall complexity of a
multiparametric program is exponential in N , this scheme can be exploited
to yield controllers of lower complexity than the optimal control scheme in-
troduced in the previous sections.

Since N multiparametric programs have been solved, the controller regions
overlap in general. In order to achieve minimum time behavior, the feedback
law associated with the region computed for the smallest number of steps c,
is selected for any given state x.

Algorithm 10.4 (Minimum-Time Controller: On-Line Application)

1. Obtain state measurement x.
2. Find controller partition cmin = minc∈{0,...,N} c, s.t. x ∈ Kc(Xf ).
3. Find controller region r, such that x ∈ Pcmin

r and compute u0 = F cmin
r x +

Gcmin
r .

4. Apply input u0 to system and go to Step 1.
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Note that the region identification for this type of controller partition is much
more efficient than simply checking all the regions. Steps 2 and 3 in Algo-
rithm 10.4 correspond to two levels of a search tree, where the search is first
performed over the feasible sets Kc(Xf ) and then over the controller partition
{Pc

r}R
c

r=1. Furthermore, one may discard all regions P i
r which are completely

covered by previously computed controllers (i.e. P i
r ⊆

⋃
j∈{1,...,i−1}Kj(Xf ))

since they are not time optimal.

Example 10.10. Consider again the double integrator from Example 10.6. The
Minimum-Time Controller is computed which steers the system to the Max-
imal LQR Invariant Set OLQR

∞ in the minimum number of time steps N . The
Algorithm terminated after 11 iterations, covering the Maximal Controllable
Set K∞(OLQR

∞ ). The resulting controller is defined over 33 regions. The re-
gions are depicted in Fig. 10.12(a). The Maximal LQR Invariant Set OLQR

∞ is
the gray region. The color of each facet corresponds to the controller partition
and thus to the number of steps needed to reach OLQR

∞ .
The control law on this partition is depicted in Fig. 10.12(b). Note that,

in general, the minimum-time control law is not continuous as can be seen in
Fig. 10.12(b).
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for the affine control law u∗(4)
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Fig. 10.9 Example 10.7: Partition of the state space for optimal control law. Poly-
hedra with the same control law were merged.
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Fig. 10.10 Example 10.8: Partition of the state space for infinite time optimal control
law
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for the affine control law u∗(5)
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Fig. 10.11 Example 10.9: Partition of the state space for optimal control law
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Model predictive control is the only advanced control technology that has
made a substantial impact on industrial control problems: its success is largely
due to its almost unique ability to handle, simply and effectively, hard con-
straints on control and states.

(D.Mayne, 2001 [186])

11.1 Introduction

In the previous chapter we discussed the solution of constrained finite time
and infinite time optimal control problems for linear systems. An infinite
horizon “sub-optimal” controller can be designed by repeatedly solving finite
time optimal control problems in a receding horizon fashion as described
next.
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Fig. 11.1 Receding Horizon Idea

At each sampling time, starting at the current state, an open-loop optimal
control problem is solved over a finite horizon (top diagram in Figure 11.1).
The computed optimal manipulated input signal is applied to the process
only during the following sampling interval [t, t + 1]. At the next time step
t+1 a new optimal control problem based on new measurements of the state is
solved over a shifted horizon (bottom diagram in Figure 11.1). The resulting
controller is referred to as Receding Horizon Controller (RHC).

A receding horizon controller where the finite time optimal control law is
computed by solving an optimization problem on-line is usually referred to
as Model Predictive Control (MPC).
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Since RHC requires to solve at each sampling time an open-loop con-
strained finite time optimal control problem as a function of the current state,
the results of the previous chapters lead to a different approach for RHC
implementation. Precomputing off-line the explicit piecewise affine feedback
policy (that provides the optimal control for all states) reduces the on-line
computation of the RHC control law to a function evaluation, thus avoiding
the on-line solution of a quadratic or linear program.

This technique is attractive for a wide range of practical problems where
the computational complexity of on-line optimization is prohibitive. It also
provides insight into the structure underlying optimization-based controllers,
describing the behaviour of the RHC controller in different regions of the state
space. Moreover, for applications where safety is crucial, the correctness of a
piecewise affine control law is easier to verify than of a mathematical program
solver.

In this chapter we review the basics of RHC. We discuss the stability
and the feasibility of RHC and we provide guidelines for choosing the ter-
minal weight so that closed-loop stability is achieved. Then, in Sections 11.4
and 11.5 the piecewise affine feedback control structure of QP-based and LP-
based RHC is obtained as a simple corollary of the results of the previous
chapters.

11.2 RHC Implementation

Consider the problem of regulating to the origin the discrete-time linear time-
invariant system {

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t)

(11.1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp are the state, input, and output
vectors, respectively, subject to the constraints

x(t) ∈ X , u(t) ∈ U , ∀t ≥ 0 (11.2)

where the sets X ⊆ Rn and U ⊆ Rm are polyhedra. Receding Horizon Control
(RHC) approaches such a constrained regulation problem in the following
way. Assume that a full measurement or estimate of the state x(t) is available
at the current time t. Then the finite time optimal control problem
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J∗
t (x(t)) = minUt→t+N|t

Jt(x(t), Ut→t+N |t) , p(xt+N |t) +

N−1∑

k=0

q(xt+k|t, ut+k|t)

subj. to xt+k+1|t = Axt+k|t + But+k|t, k = 0, . . . , N − 1
xt+k|t ∈ X , ut+k|t ∈ U , k = 0, . . . , N − 1
xt+N |t ∈ Xf

xt|t = x(t)
(11.3)

is solved at time t, where Ut→t+N |t = {ut|t, . . . , ut+N−1|t} and where xt+k|t
denotes the state vector at time t+k predicted at time t obtained by starting
from the current state xt|t = x(t) and applying to the system model

xt+k+1|t = Axt+k|t + But+k|t (11.4)

the input sequence ut|t, . . . , ut+N−1|t. Often the symbol xt+k|t is read as “the
state x at time t + k predicted at time t”. Similarly, ut+k|t is read as “the
input u at time t + k computed at time t”. For instance, x3|1 represents the
predicted state at time 3 when the prediction is done at time t = 1 starting
from the current state x(1). It is different, in general, from x3|2 which is the
predicted state at time 3 when the prediction is done at time t = 2 starting
from the current state x(2).

Let U∗
t→t+N |t = {u∗

t|t, . . . , u
∗
t+N−1|t} be the optimal solution of (11.3) at

time t and J∗
t (x(t)) the corresponding value function. Then, the first element

of U∗
t→t+N |t is applied to system (11.1)

u(t) = u∗
t|t(x(t)). (11.5)

The optimization problem (11.3) is repeated at time t + 1, based on the
new state xt+1|t+1 = x(t + 1), yielding a moving or receding horizon control
strategy.

Let ft : Rn → Rm denote the receding horizon control law that associates
the optimal input u∗

t|t to the current state x(t), ft(x(t)) = u∗
t|t(x(t)). Then,

the closed-loop system obtained by controlling (11.1) with the RHC (11.3)-
(11.5) is

x(k + 1) = Ax(k) + Bfk(x(k)) , fcl(x(k), k), k ≥ 0 (11.6)

Note that the notation used in this chapter is slightly different from the
one used in Chapter 10. Because of the receding horizon strategy, there is the
need to distinguish between the input u∗(t + k) applied to the plant at time
t + k, and optimizer u∗

t+k|t of the problem (11.3) at time t + k obtained by

solving (11.3) at time t with xt|t = x(t).
Consider problem (11.3). As the system, the constraints and the cost func-

tion are time-invariant, the solution to problem (11.3) is a time-invariant
function of the initial state x(t). Therefore, in order to simplify the notation,
we can set t = 0 in (11.3) and remove the term “|0” since it is now redundant
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and rewrite (11.3) as

J∗
0 (x(t)) = minU0 J0(x(t), U0) , p(xN ) +

N−1∑

k=0

q(xk, uk)

subj. to xk+1 = Axk + Buk, k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(t)

(11.7)

where U0 = {u0, . . . , uN−1} and the notation in Remark 7.1 applies. Similarly
to previous chapters, we will focus on two classes of cost functions. If the
1-norm or ∞-norm is used in (11.7), then we set p(xN ) = ‖PxN‖p and
q(xk, uk) = ‖Qxk‖p + ‖Ruk‖p with p = 1 or p =∞ and P , Q, R full column
rank matrices. The cost function is rewritten as

J0(x(0), U0) , ‖PxN‖p +

N−1∑

k=0

‖Qxk‖p + ‖Ruk‖p (11.8)

If the squared euclidian norm is used in (11.7), then we set p(xN ) = x′
NPxN

and q(xk, uk) = x′
kQxk + u′

kRuk with P � 0, Q � 0 and R ≻ 0. The cost
function is rewritten as

J0(x(0), U0) , x′
NPxN +

N−1∑

k=0

x′
kQxk + u′

kRuk (11.9)

The control law (11.5)

u(t) = f0(x(t)) = u∗
0(x(t)). (11.10)

and closed-loop system (11.6)

x(k + 1) = Ax(k) + Bf0(x(k)) = fcl(x(k)), k ≥ 0 (11.11)

are time-invariant as well.
Note that the notation in (11.7) does not allow us to distinguish at which

time step a certain state prediction or optimizer is computed and is valid for
time-invariant problems only. Nevertheless, we will prefer the RHC notation
in (11.7) to the one in (11.3) in order to simplify the exposition.

Compare problem (11.7) and the CFTOC (10.32). The only difference is
that problem (11.7) is solved for x0 = x(t), t ≥ 0 rather than for x0 = x(0).
For this reason we can make use of all the results of the previous chapter.
In particular, X0 denotes the set of feasible states x(t) for problem (11.7) as
defined and studied in Section 10.3. Recall from Section 10.3 that X0 is a
polyhedron.
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From the above explanations it is clear that a fixed prediction horizon is
shifted or receded over time, hence its name, receding horizon control. The
procedure of this on-line optimal control technique is summarized in the
following algorithm.

Algorithm 11.1 (On-line receding horizon control)

1. MEASURE the state x(t) at time instant t
2. OBTAIN U∗

0 (x(t)) by solving the optimization problem (11.7)
3. IF U∗

0 (x(t)) = ∅ THEN ‘problem infeasible’ STOP
4. APPLY the first element u∗

0 of U∗
0 to the system

5. WAIT for the new sampling time t + 1, GOTO (1.)

Example 11.1. Consider the double integrator system (10.46) rewritten be-
low: 




x(t + 1) =

[
1 1
0 1

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
1 0
]
x(t)

(11.12)

The aim is to compute the receding horizon controller that solves the opti-
mization problem (11.7) with p(xN ) = x′

NPxN , q(xk, uk) = x′
kQxk + u′

kRuk

N = 3, P = Q =

[
1 0
0 1

]
, R = 10, Xf = R2 subject to the input constraints

− 0.5 ≤ u(k) ≤ 0.5, k = 0, . . . , 3 (11.13)

and the state constraints
[
−5
−5

]
≤ x(k) ≤

[
5
5

]
, k = 0, . . . , 3. (11.14)

The QP problem associated with the RHC has the form (10.52) with

H =
[ 13.50 −10.00 −0.50
−10.00 22.00 −10.00
−0.50 −10.00 31.50

]
, F =

[−10.50 10.00 −0.50
−20.50 10.00 9.50

]
, Y = [ 14.50 23.50

23.50 54.50 ]

(11.15)
and
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G0 =




0.50 −1.00 0.50
−0.50 1.00 −0.50
−0.50 0.00 0.50
−0.50 0.00 −0.50
0.50 0.00 −0.50
0.50 0.00 0.50
−1.00 0.00 0.00
0.00 −1.00 0.00
1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 −1.00
0.00 0.00 1.00
0.00 0.00 0.00
−0.50 0.00 0.50
0.00 0.00 0.00
0.50 0.00 −0.50
−0.50 0.00 0.50
0.50 0.00 −0.50
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00




, E0 =




0.50 0.50
−0.50 −0.50
0.50 0.50
−0.50 −0.50
−0.50 −0.50
0.50 0.50
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
1.00 1.00
−0.50 −0.50
−1.00 −1.00
0.50 0.50
−0.50 −1.50
0.50 1.50
1.00 0.00
0.00 1.00
−1.00 0.00
0.00 −1.00




, W0 =




0.50
0.50
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
0.50
0.50
5.00
5.00
5.00
5.00
0.50
0.50
5.00
5.00
5.00
5.00




(11.16)

The RHC (11.7)-(11.10) algorithm becomes

1. MEASURE the state x(t) at time instance t
2. COMPUTE F̃ = 2x′(t)F and W̃0 = W0 + E0x(t)
3. OBTAIN U∗

0 (x(t)) by solving the optimization problem [U∗
0 , Flag] =

QP(H, F̃ , G0, W̃0)
4. IF Flag=‘infeasible’ THEN STOP
5. APPLY the first element u∗

0 of U∗
0 to the system

6. WAIT for the new sampling time t + 1, GOTO (1.)
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Fig. 11.2 Example 11.1. Closed-loop trajectories for the initial state x(0)=[-4.5,2]
(boxes) and x(0)=[-4.5,3] (circles).

Fig. 11.2 shows two closed-loop trajectories starting at state x(0) =
[−4.5, 2] and x(0) = [−4.5, 3]. The trajectory starting from x(0) = [−4.5, 2]
converges to the origin and satisfies input and state constraints. The tra-
jectory starting from x(0) = [−4.5, 3] stops at x(2) = [1, 2] because of in-
feasibility. At each time step, the open-loop predictions are depicted with
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dashed lines. This shows that the closed-loop trajectories are different from
the open-loop predicted trajectories because of the receding horizon nature
of the controller.

In Fig. 11.3(a) the feasible state space was gridded and each point of
the grid was marked with a square if the RHC law (11.7)-(11.10) generates
feasible closed-loop trajectories and with a circle if it does not. The set of all
initial conditions generating feasible closed-loop trajectories is the maximal
positive invariant set O∞ of the autonomous system (11.11). We remark that
this set is different from the set X0 of feasible initial conditions for the QP
problem (10.52) with matrices (11.15)-(11.16). Both sets O∞ and X0 are
depicted in figure 11.3(b). The computation of f0 is discussed later in this
chapter. Because of the nonlinear nature of f0, the computation of O∞ for
the system (11.11) is not an easy task. Therefore we will show how to choose
a terminal invariant set Xf such that O∞ = X0 is guaranteed automatically.

Note that a feasible closed-loop trajectory does not necessarily converge
to the origin. Feasibility, convergence and stability of RHC are discussed in
detail in the next sections. Before that we want to illustrate these issues
through another example.
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(a) Boxes (Circles) are initial
points leading (not leading) to
feasible closed-loop trajectories

−5 0 5
−5

0

5

 x
1

 x
2

(b) Maximal positive invariant
set O∞ (grey) and set of ini-
tial feasible states X0 (white and
gray)

Fig. 11.3 Double integrator Example (11.1)

Example 11.2. Consider the unstable system

x(t + 1) =

[
2 1
0 0.5

]
x(t) +

[
1
0

]
u(t) (11.17)

with the input constraints
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− 1 ≤ u(k) ≤ 1, k = 0, . . . , N − 1 (11.18)

and the state constraints
[
−10
−10

]
≤ x(k) ≤

[
10
10

]
, k = 0, . . . , N − 1. (11.19)

In the following, we study the receding horizon control problem (11.7) with
p(xN ) = x′

NPxN , q(xk, uk) = x′
kQxk + u′

kRuk for different horizons N and
weights R. We set Q = I and omit both the terminal set constraint and the
terminal weight, i.e. Xf = R2, P = 0.

Fig. 11.4 shows closed-loop trajectories for receding horizon control loops
that were obtained with the following parameter settings

Setting 1: N = 2, R = 10
Setting 2: N = 3, R = 2
Setting 3: N = 4, R = 1

For Setting 1 (Fig. 11.4(a)) there is evidently no initial state that can be
steered to the origin. Indeed, it turns out, that all non-zero initial states
x(0) ∈ R2 diverge from the origin and eventually become infeasible. Different
from that, Setting 2 leads to a receding horizon controller, that manages to
get some of the initial states converge to the origin, as seen in Fig. 11.4(b).
Finally, Fig. 11.4(c) shows that Setting 3 can expand the set of those initial
states that can be brought to the origin.

Note the behavior of particular initial states:

1. Closed-loop trajectories starting at state x(0) = [−4, 7] behave differently
depending on the chosen setting. Both Setting 1 and Setting 2 cannot
bring this state to the origin, but the controller with Setting 3 succeeds.

2. There are initial states, e.g. x(0) = [−4, 8.5], that always lead to infeasible
trajectories independent of the chosen settings. It turns out, that no
setting can be found that brings those states to the origin.

These results illustrate that the choice of parameters for receding horizon
control influences the behavior of the resulting closed-loop trajectories in a
complex manner. A better understanding of the effect of parameter changes
can be gained from an inspection of maximal positive invariant sets O∞ for
the different settings, and the maximal control invariant set C∞ as depicted
in Fig. 11.5.
The maximal positive invariant set stemming from Setting 1 only contains
the origin (O∞ = {0}) which explains why all non-zero initial states diverge
from the origin. For Setting 2 the maximal positive invariant set has grown
considerably, but does not contain the initial state x(0) = [−4, 7], thus leading
to infeasibility eventually. Setting 3 leads to a maximal positive invariant set
that contains this state and thus keeps the closed-loop trajectory inside this
set for all future time steps.
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From Fig. 11.5 we also see that a trajectory starting at x(0) = [−4, 8.5] cannot
be kept inside any bounded set by any setting (indeed, by any controller)
since it is outside the maximal control invariant set C∞.

11.3 RHC Main Issues

If we solve the receding horizon problem for the special case of an infinite hori-
zon (setting N = ∞ in (11.7) as we did for LQR in Section 8.4 and CLQR
in Section 10.4.3) then it is almost immediate that the closed-loop system
with this controller has some nice properties. Most importantly, the differ-
ences between the open-loop predicted and the actual closed-loop trajectories
observed in Example 11.1 disappear. As a consequence, if the optimization
problem is feasible, then the closed-loop trajectories will be feasible for all
times. If the optimization problem has a finite solution, then in closed loop
the states and inputs will converge to the origin asymptotically.

In RHC, when we solve the optimization problem over a finite horizon
repeatedly at each time step, we hope that the controller resulting from this
“short-sighted” strategy will lead to a closed-loop behavior that mimics that
of the infinite horizon controller. The examples in the last section indicated
that at least two problems may occur. First of all, the controller may lead
us into a situation where after a few steps the finite horizon optimal control
problem that we need to solve at each time step is infeasible, i.e., that there
does not exist a sequence of control inputs for which the constraints are
obeyed. Second, even if the feasibility problem does not occur, the generated
control inputs may not lead to trajectories that converge to the origin, i.e.,
that the closed-loop system is asymptotically stable.

In general, stability and feasibility are not ensured by the RHC law (11.7)-
(11.10). In principle, we could analyze the RHC law for feasibility, stability
and convergence but this is difficult as the examples in the last section illus-
trated. Therefore, conditions will be derived on how the terminal weight P
and the terminal constraint set Xf should be chosen such that closed-loop
stability and feasibility are ensured.

11.3.1 Feasibility of RHC

The examples in the last section illustrate that feasibility at the initial time
x(0) ∈ X0 does not necessarily imply feasibility for all future times. It is desir-
able to design a RHC such that feasibility for all future times is guaranteed,
a property we refer to as persistent feasibility.

We would like to gain some insight when persistent feasibility occurs and
how it is affected by the formulation of the control problem and the choice
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of the controller parameters. Let us first recall the various sets introduced in
Sections 10.1-10.3 and how they are influenced.

C∞: The maximal control invariant set C∞ is only affected by the sets X and
U , the constraints on states and inputs. It is the largest set over which we
can expect any controller to work.

X0: A control input U0 can only be found, i.e. the control problem is feasible,
if x(0) ∈ X0. The set X0 depends on X and U , on the controller horizon N
and on the controller terminal set Xf . It does not depend on the objective
function and it has generally no relation with C∞ (it can be larger, smaller,
etc.).

O∞:The maximal positive invariant set for the closed-loop system depends
on the controller and as such on all parameters affecting the controller,
i.e., X , U , N , Xf and the objective function with its parameters P , Q and
R. Clearly O∞ ⊆ X0 because if it were not there would be points in O∞
for which the control problem is not feasible. Because of invariance, the
closed-loop is persistently feasible for all states x(0) ∈ O∞.

We can now state necessary and sufficient conditions guaranteeing persistent
feasibility by means of invariant set theory.

Lemma 11.2. Let O∞ be the maximal positive invariant set for the closed-
loop system x(k+1) = fcl(x(k)) in (11.11) with constraints (11.2). The RHC
problem is persistently feasible if and only if X0 = O∞

Proof: For the RHC problem to be persistently feasible X0 must be pos-
itive invariant for the closed-loop system. We argued above that O∞ ⊆ X0.
As the positive invariant set X0 cannot be larger than the maximal positive
invariant set O∞, it follows that X0 = O∞. 2

As X0 does not depend on the controller parameters P , Q and R but
O∞ does, the requirement X0 = O∞ for persistent feasibility shows that, in
general, only some P , Q and R are allowed. The parameters P , Q and R
affect the performance. The complex effect they have on persistent feasibility
makes their choice extremely difficult for the design engineer. In the following
we will remedy this undesirable situation. We will make use of the following
important sufficient condition for persistent feasibility.

Lemma 11.3. Consider the RHC law (11.7)-(11.10) with N ≥ 1. If X1 is
a control invariant set for system (11.1)-(11.2) then the RHC is persistently
feasible. Also, O∞ is independent of P , Q and R.

Proof: If X1 is control invariant then, by definition, X1 ⊆ Pre(X1).
Also recall that Pre(X1) = X0 from the properties of the feasible sets in
equation (10.43) (note that Pre(X1) ∩ X = Pre(X1) from control invari-
ance). Pick some x ∈ X0 and some feasible control u for that x and define
x+ = Ax + Bu ∈ X1. Then x+ ∈ X1 ⊆ Pre(X1) = X0. As u was arbitrary (as
long as it is feasible) x+ ∈ X0 for all feasible u. As X0 is positive invariant,
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X0 = O∞ from Lemma 11.2. As X0 is positive invariant for all feasible u, O∞
does not depend on P , Q and R. 2

Note that in the proof of Lemma 11.3, persistent feasibility does not depended
on the input u as long as it is feasible. For this reason, sometimes in the
literature this property is referred to “persistently feasible for all feasible u”.

We can use Lemma 11.3 in the following manner. For N = 1, X1 = Xf . If
we choose the terminal set to be control invariant then X0 = O∞ and RHC
will be persistently feasible independent of chosen control objectives and pa-
rameters. Thus the designer can choose the parameters to affect performance
without affecting persistent feasibility. A control horizon of N = 1 is often
too restrictive, but we can easily extend Lemma 11.3.

Theorem 11.1. Consider the RHC law (11.7)-(11.10) with N ≥ 1. If Xf is
a control invariant set for system (11.1)-(11.2) then the RHC is persistently
feasible.

Proof: If Xf is control invariant, then XN−1, XN−2, . . . ,X1 are control
invariant and Lemma 11.3 establishes persistent feasibility for all feasible u.
2

Corollary 11.1. Consider the RHC law (11.7)-(11.10) with N ≥ 1. If there
exists i ∈ [1, N ] such that Xi is a control invariant set for system (11.1)-
(11.2), then the RHC is persistently feasible for all cost functions.

Proof: Follows directly from the proof of Theorem 11.3. 2

Recall that Theorem 10.3 together with Remark 10.9 define the properties
of the set X0 as N varies. Therefore, Theorem 11.3 and Corollary 11.1 provide
also guidelines on the choice of the horizon N for guaranteeing persistent
feasibility for all feasible u. For instance, if the RHC problem (11.7) for
N = N̄ yields a control invariant set X0, then from Theorem 10.3 the RHC
law (11.7)-(11.10) with N = N̄ + 1 is persistently feasible for all feasible u.
Moreover, from Corollary 11.1 the RHC law (11.7)-(11.10) with N ≥ N̄ + 1
is persistently feasible for all feasible u.

Corollary 11.2. Consider the RHC problem (11.7)-(11.10). If N is greater
than the determinedness index N̄ of K∞(Xf ) for system (11.1)-(11.2), then
the RHC is persistently feasible.

Proof: The feasible set Xi for i = 1, . . . , N − 1 is equal to the (N −
i)-step controllable set Xi = KN−i(Xf ). If the maximal controllable set is
finitely determined then Xi = K∞(Xf ) for i ≤ N − N̄ . Note that K∞(Xf )
is control invariant. Then persistent feasibility for all feasible u follows from
Corollary 11.1. 2

Persistent feasibility does not guarantee that the closed-loop trajectories
converge towards the desired equilibrium point. From Theorem 11.3 it is clear
that one can only guarantee that x(k) ∈ X1 for all k > 0 if x(0) ∈ X0.
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One of the most popular approaches to guarantee persistent feasibility
and stability of the RHC law (11.7)-(11.10) makes use of a control invariant
terminal set Xf and a terminal cost P which drives the closed-loop optimal
trajectories towards Xf . A detailed discussion follows in the next section.

11.3.2 Stability of RHC

In this section we will derive the main stability result for RHC. Our objective
is to find a Lyapunov function for the closed-loop system. We will show next
that if terminal cost and constraint are appropriately chosen, then the value
function J∗

0 (·) is a Lyapunov function.

Theorem 11.2. Consider system (11.1)-(11.2), the RHC law (11.7)-(11.10),
the cost function (11.9) or (11.8) and the closed-loop system (11.11). Assume
that

(A0) Q = Q′ ≻ 0, R = R′ ≻ 0, P ≻ 0, if cost (11.9) is used, or Q, R, P full
column rank matrices if cost (11.8) is used.

(A1) The sets X , Xf and U contain the origin in their interior and are
closed.

(A2) Xf is control invariant, Xf ⊆ X .
(A3) min

v∈U , Ax+Bv∈Xf

(−p(x) + q(x, v) + p(Ax + Bv)) ≤ 0, ∀x ∈ Xf .

Then,
(i) the state of the closed-loop system (11.11) converges to the origin, i.e.,
limk→∞ x(k) = 0,
(ii) the origin of the closed-loop system (11.11) is asymptotically stable with
domain of attraction X0.

Proof: Based on Lemma 11.2, 11.3 and Theorem 11.3, from hypothesis
(A2) we conclude that X0 = O∞ is a positive invariant set for the closed-
loop system (11.11) for any choice of N ≥ 1, Q, R and P . Thus persistent
feasibility for any feasible input is guaranteed.

Next we prove convergence and stability. We establish that the function
J∗

0 (·) in (11.7) is a Lyapunov function for the closed-loop system. Because
J0, system and constraints are time-invariant we can study the properties of
J∗

0 between step k = 0 and step k + 1 = 1.
Consider problem (11.7) at time t = 0. Let x(0) ∈ X0 and let U∗

0 =
{u∗

0, . . . , u
∗
N−1} be the optimizer of problem (11.7) and x0 = {x(0), x1, . . . , xN}

be the corresponding optimal state trajectory. After the implementation of
u∗

0 we obtain x(1) = x1 = Ax(0) + Bu∗
0. Consider now problem (11.7) for

t = 1. We will construct an upper bound on J∗
0 (x(1)). Consider the sequence

Ũ1 = {u∗
1, . . . , u

∗
N−1, v} and the corresponding state trajectory resulting from

the initial state x(1), x̃1 = {x1, . . . , xN , AxN + Bv}. Because xN ∈ Xf and
(A2) there exists a feasible v such that xN+1 = AxN +Bv ∈ Xf and with this
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v the sequence Ũ1 = {u∗
1, . . . , u

∗
N−1, v} is feasible. Because Ũ1 is not optimal

J0(x(1), Ũ1) is an upper bound on J∗
0 (x(1)).

Since the trajectories generated by U∗
0 and Ũ1 overlap, except for the first

and last sampling intervals, it is immediate to show that

J∗
0 (x(1)) ≤ J0(x(1), Ũ1) = J∗

0 (x(0))− q(x0, u
∗
0)− p(xN )+

(q(xN , v) + p(AxN + Bv))
(11.20)

Let x = x0 = x(0) and u = u∗
0. Under assumption (A3) equation (11.20)

becomes
J∗

0 (Ax + Bu)− J∗
0 (x) ≤ −q(x, u), ∀x ∈ X0. (11.21)

Equation (11.21) and the hypothesis (A0) on the matrices R and Q ensure
that J∗

0 (x) strictly decreases along the state trajectories of the closed-loop
system (11.11) for any x ∈ X0, x 6= 0. In addition to the fact that J∗

0 (x)
decreases, J∗

0 (x) is lower-bounded by zero and since the state trajectories
generated by the closed-loop system (11.11) starting from any x(0) ∈ X0 lie
in X0 for all k ≥ 0, equation (11.21) is sufficient to ensure that the state of
the closed-loop system converges to zero as k → 0 if the initial state lies in
X0. We have proven (i).

In order to prove stability via Theorem 7.2 we have to establish that
J∗

0 (x) is a Lyapunov function. Positivity holds by definition, decrease fol-
lows from (11.21). For continuity at the origin we will show that J∗

0 (x) ≤
p(x), ∀x ∈ Xf and as p(x) is continuous at the origin J∗

0 (x) must be con-
tinuous as well. From assumption (A2), Xf is control invariant and thus for
any x ∈ Xf there exists a feasible input sequence {u0, . . . , uN−1} for prob-
lem (11.7) starting from the initial state x0 = x whose corresponding state
trajectory is {x0, x1, . . . , xN} stays in Xf , i.e., xi ∈ Xf ∀ i = 0, . . . , N . Among
all the aforementioned input sequences {u0, . . . , uN−1} we focus on the one
where ui satisfies assumption (A3) for all i = 0, . . . , N − 1. Such a sequence
provides an upper bound on the function J∗

0 :

J∗
0 (x0) ≤

(
N−1∑

i=0

q(xi, ui)

)
+ p(xN ), xi ∈ Xf , i = 0, . . . , N (11.22)

which can be rewritten as

J∗
0 (x0) ≤

(∑N−1
i=0 q(xi, ui)

)
+ p(xN ),

= p(x0) +
(∑N−1

i=0 q(xi, ui) + p(xi+1)− p(xi)
)

xi ∈ Xf , i = 0, . . . , N

(11.23)
which from assumption (A3) yields

J∗
0 (x) ≤ p(x), ∀x ∈ Xf . (11.24)
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In conclusion, there exist a finite time in which any x ∈ X0 is steered to a
level set of J∗

0 (x) contained in Xf after which convergence to and stability of
the origin follows. 2

Remark 11.1. The assumption on the positive definiteness of Q in Theo-
rem 11.2 can be relaxed as in standard optimal control by allowing Q � 0
with (Q

1
2 , A) observable.

Remark 11.2. The procedure outlined in Theorem 11.2 is, in general, conser-
vative because it requires the introduction of an artificial terminal set Xf

to guarantee persistent feasibility and a terminal cost to guarantee stabil-
ity. Requiring xN ∈ Xf usually decreases the size of the region of attraction
X0 = O∞. Also the performance may be negatively affected.

Remark 11.3. A function p(x) satisfying assumption (A3) of Theorem 11.2 is
often called control Lyapunov function .

The hypothesis (A2) of Theorem 11.2 is required for guaranteeing persis-
tent feasibility as discussed in Section 11.3.1. In some part of the literature
the constraint Xf is not used. However, in this literature the terminal region
constraint Xf is implicit. In fact, it is typically required that the horizon N
is sufficiently large to ensure feasibility of the RHC (11.7)–(11.10) at all time
instants t. Technically this means that N has to be greater than the deter-
minedness index N̄ of system (11.1)-(11.2) which by Corollary 11.2 guarantees
persistent feasibility for all inputs. We refer the reader to Section 11.3.1 for
more details on feasibility.

Next we will show a few simple choices for P and Xf satisfying the hy-
pothesis (A2) and (A3) of Theorem 11.3.

Stability, 2-Norm case

Consider system (11.1)-(11.2), the RHC law (11.7)-(11.10), the cost func-
tion(11.9) and the closed-loop system (11.11). A simple choice Xf is obtained
by choosing Xf as the maximal positive invariant set (see Section 10.1) for
the closed-loop system x(k + 1) = (A + BF∞)x(k) where F∞ is the associ-
ated unconstrained infinite-time optimal controller (8.32). With this choice
the assumption (A3) in Theorem 11.2 becomes

x′(A′(P − PB(B′PB + R)−1BP )A + Q− P )x ≤ 0, ∀x ∈ Xf (11.25)

which is satisfied as an equality if P is chosen as the solution P∞ of the
algebraic Riccati equation (8.31) for system (11.1) (see proof in Section 8.5).

If system (11.1) is asymptotically stable, then Xf can be alternatively
chosen as the positive invariant set of the autonomous system x(k + 1) =
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Ax(k) subject to the state constraints x ∈ X . Therefore in Xf the input 0 is
feasible and the assumption (A3) in Theorem 11.2 becomes

− x′Px + x′A′PAx + x′Qx ≤ 0, ∀x ∈ Xf (11.26)

which is satisfied if P solves x′(−P + A′PA + Q)x = 0, i.e. the standard
Lyapunov equation (7.42). In this case stability implies exponential stability.
The argument is simple. As the system is closed-loop stable it enters the
terminal region in finite time. If Xf is chose as suggested, the closed-loop
system is unconstrained after entering Xf . For an unconstrained linear system
the convergence to the origin is exponential.

Stability, 1, ∞-Norm case

Consider system (11.1)-(11.2), the RHC law (11.7)-(11.10), the cost func-
tion(11.8) and the closed-loop system (11.11). Let p = 1 or p = ∞. If sys-
tem (11.1) is asymptotically stable, then Xf can be chosen as the positively
invariant set of the autonomous system x(k+1) = Ax(k) subject to the state
constraints x ∈ X . Therefore in Xf the input 0 is feasible and the assumption
(A3) in Theorem 11.2 becomes

− ‖Px‖p + ‖PAx‖p + ‖Qx‖p ≤ 0, ∀x ∈ Xf (11.27)

which is the corresponding Lyapunov inequality for the 1, ∞-norm case (7.48)
whose solution has been discussed in Section 7.5.3.

In general, if the unconstrained optimal controller (9.31) exists it is PPWA.
In this case the computation of the maximal invariant set Xf for the closed-
loop PWA system

x(k + 1) = (A + F i)x(k) if Hix ≤ 0, i = 1, . . . , Nr (11.28)

is more involved. However if such Xf can be computed it can be used as
terminal constraint in Theorem 11.2. With this choice the assumption (A3)
in Theorem 11.2 is satisfied by the infinite-time unconstrained optimal cost
P∞ in (9.32).

11.4 State Feedback Solution of RHC, 2-Norm Case

The state feedback receding horizon controller (11.10) with cost (11.9) for
system (11.1) is

u(t) = f∗
0 (x(t)) (11.29)
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where f∗
0 (x0) : Rn → Rm is the piecewise affine solution to the CFTOC (11.7)

and is obtained as explained in Section 10.4.
We remark that the implicit form (11.7) and the explicit form (11.29)

describe the same function, and therefore the stability, feasibility, and per-
formance properties mentioned in the previous sections are automatically
inherited by the piecewise affine control law (11.29). Clearly, the explicit
form (11.29) has the advantage of being easier to implement, and provides
insight into the type of action of controller action in different regions CRi of
the state space.

Example 11.3. Consider the double integrator system (11.12) subject to the
input constraints

− 1 ≤ u(k) ≤ 1 (11.30)

and the state constraints

− 10 ≤ x(k) ≤ 10 (11.31)

We want to regulate the system to the origin by using the RHC prob-
lem (11.7)–(11.10) with cost (11.9), Q = [ 1 0

0 1 ], R = 0.01, and P = P∞ where
P∞ solves the algebraic Riccati equation (8.31). We consider three cases:

Case 1. N = 2, Xf = 0,
Case 2. N = 2, Xf is the positively invariant set of the closed-loop system
x(k + 1) = (A + BF∞) where F∞ is the infinite-time unconstrained optimal
controller (8.32).
Case 3. No terminal state constraints: Xf = Rn and N = 6 = determinedness
index+1.

From the results presented in this chapter, all three cases guarantee per-
sistent feasibility for all cost functions and asymptotic stability of the origin
with region of attraction X0 (with X0 different for each case) . Next we will
detail the matrices of the quadratic program for the on-line solution as well
as the explicit solution for the three cases.

Case 1: Xf = 0. The mp-QP problem associated with the RHC has the
form (10.52) with

H = [ 19.08 8.55
8.55 5.31 ] , F =

[
−10.57 −5.29
−10.59 −5.29

]
, Y = [ 10.31 9.33

9.33 10.37 ] (11.32)

and
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G0 =




0.00 −1.00
0.00 1.00
0.00 0.00

−1.00 0.00
0.00 0.00
1.00 0.00

−1.00 0.00
−1.00 −1.00
1.00 0.00
1.00 1.00
0.00 0.00

−1.00 0.00
0.00 0.00
1.00 0.00

−1.00 0.00
1.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
1.00 0.00
1.00 1.00

−1.00 0.00
−1.00 −1.00




, E0 =




0.00 0.00
0.00 0.00
1.00 1.00

−1.00 −1.00
−1.00 −1.00
1.00 1.00
0.00 0.00

−1.00 −1.00
0.00 0.00
1.00 1.00
1.00 1.00

−1.00 −1.00
−1.00 −1.00
1.00 1.00

−1.00 −2.00
1.00 2.00
1.00 0.00
0.00 1.00

−1.00 0.00
0.00 −1.00
1.00 0.00
0.00 1.00

−1.00 0.00
0.00 −1.00
0.00 0.00
1.00 1.00
0.00 0.00

−1.00 −1.00




, W0 =




1.00
1.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
1.00
1.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
0.00
0.00
0.00
0.00




(11.33)

The corresponding polyhedral partition of the state-space is depicted in
Fig. 11.6(a). The RHC law is:

u =





[−0.61 −1.61 ] x if

[
0.70 0.71
−0.70 −0.71
−0.70 −0.71
0.70 0.71

]
x ≤

[
0.00
0.00
0.00
0.00

]
(Region #1)

[−1.00 −2.00 ] x if




−0.71 −0.71
−0.70 −0.71
−0.45 −0.89
0.45 0.89
0.71 0.71
−0.70 −0.71


x ≤




0.00
−0.00
0.45
0.45
0.71
−0.00


 (Region #2)

[−1.00 −2.00 ] x if
[

0.45 0.89
−0.70 −0.71
0.71 0.71

]
x ≤

[
0.45
−0.00
−0.00

]
(Region #3)

[−0.72 −1.72 ] x if

[
0.39 0.92
0.70 0.71
−0.70 −0.71
0.70 0.71

]
x ≤

[
0.54
0.00
0.00
−0.00

]
(Region #4)

[−1.00 −2.00 ] x if




0.45 0.89
−0.71 −0.71
0.70 0.71
−0.45 −0.89
0.71 0.71
0.70 0.71


x ≤




0.45
0.71
−0.00
0.45
0.00
−0.00


 (Region #5)

[−1.00 −2.00 ] x if
[−0.45 −0.89
−0.71 −0.71
0.70 0.71

]
x ≤

[
0.45
−0.00
−0.00

]
(Region #6)

[−0.72 −1.72 ] x if

[−0.39 −0.92
0.70 0.71
−0.70 −0.71
−0.70 −0.71

]
x ≤

[
0.54
0.00
0.00
−0.00

]
(Region #7)

The union of the regions depicted in Fig. 11.6(a) is X0. From Theorem 11.2,
X0 is also the domain of attraction of the RHC law.

Case 2: Xf positively invariant set. The set Xf is
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Xf = {x ∈ R2 :

[−0.35617 −0.93442
0.35617 0.93442
0.71286 0.70131
−0.71286 −0.70131

]
x ≤

[
0.58043
0.58043
1.9049
1.9049

]
} (11.34)

The mp-QP problem associated with the RHC has the form (10.52) with

H = [ 19.08 8.55
8.55 5.31 ] , F =

[
−10.57 −5.29
−10.59 −5.29

]
, Y = [ 10.31 9.33

9.33 10.37 ] (11.35)

G0 =




0.00 −1.00
0.00 1.00
0.00 0.00

−1.00 0.00
0.00 0.00
1.00 0.00

−1.00 0.00
−1.00 −1.00
1.00 0.00
1.00 1.00
0.00 0.00

−1.00 0.00
0.00 0.00
1.00 0.00

−1.00 0.00
1.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

−1.29 −0.93
1.29 0.93
1.41 0.70

−1.41 −0.70




, E0 =




0.00 0.00
0.00 0.00
1.00 1.00

−1.00 −1.00
−1.00 −1.00
1.00 1.00
0.00 0.00

−1.00 −1.00
0.00 0.00
1.00 1.00
1.00 1.00

−1.00 −1.00
−1.00 −1.00
1.00 1.00

−1.00 −2.00
1.00 2.00
1.00 0.00
0.00 1.00

−1.00 0.00
0.00 −1.00
1.00 0.00
0.00 1.00

−1.00 0.00
0.00 −1.00

−0.93 −0.93
0.93 0.93
0.70 0.70

−0.70 −0.70




, W0 =




1.00
1.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
1.00
1.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
0.58
0.58
1.90
1.90




(11.36)

The corresponding polyhedral partition of the state-space is depicted in
Fig. 11.6(b). The RHC law is:
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u =





[−0.61 −1.61 ] x if




1.00 0.00
−1.00 0.00
−0.36 −0.93
0.36 0.93
0.71 0.70
−0.71 −0.70


 x ≤




5.00
5.00
0.58
0.58
1.90
1.90


 (Region #1)

1.00 if




1.00 0.00
−1.00 0.00
−0.71 −0.71
−0.21 −0.98
0.21 0.98
−0.32 −0.95
0.27 0.96


 x ≤




5.00
5.00
3.54
1.67
−0.98
1.79
−1.13


 (Region #2)

1.00 if




0.29 0.96
1.00 0.00
−1.00 0.00
−0.27 −0.96
−0.45 −0.89
0.36 0.93


 x ≤




−0.36
5.00
5.00
1.13
1.65
−0.58


 (Region #3)

1.00 if
[−1.00 0.00
−0.21 −0.98
0.45 0.89

]
x ≤

[
5.00
0.98
−1.65

]
(Region #4)

− 1.00 if




−0.29 −0.96
1.00 0.00
−1.00 0.00
0.27 0.96
0.45 0.89
−0.36 −0.93


 x ≤




−0.36
5.00
5.00
1.13
1.65
−0.58


 (Region #5)

− 1.00 if
[

1.00 0.00
0.21 0.98
−0.45 −0.89

]
x ≤

[
5.00
0.98
−1.65

]
(Region #6)

− 1.00 if




1.00 0.00
−1.00 0.00
0.71 0.71
−0.21 −0.98
0.21 0.98
0.32 0.95
−0.27 −0.96


 x ≤




5.00
5.00
3.54
−0.98
1.67
1.79
−1.13


 (Region #7)

[−0.45 −1.44 ] x− 0.45 if
[

1.00 0.00
0.29 0.96
−0.71 −0.70

]
x ≤

[
5.00
0.36
−1.90

]
(Region #8)

[−0.45 −1.44 ] x + 0.45 if
[−1.00 0.00
−0.29 −0.96
0.71 0.70

]
x ≤

[
5.00
0.36
−1.90

]
(Region #9)

The union of the regions depicted in Fig. 11.6(b) is X0. Note that from
Theorem 11.2 the set X0 is also the domain of attraction of the RHC law.

Case 3: Xf = Rn, N = 6. The QP problem associated with the RHC has
the form (10.52) with

H =




5.30 −0.89 0.01 −1.10 −0.50 0.21
−0.89 2.48 −0.01 1.56 0.00 −1.11
0.01 −0.01 5.31 −0.01 0.00 3.25

−1.10 1.56 −0.01 2.48 0.01 −0.89
−0.50 0.00 0.00 0.01 1.53 −0.00
0.21 −1.11 3.25 −0.89 −0.00 7.03


 , F =

[
−0.51 −0.00 0.00 −0.01 −0.50 0.00
−0.52 −0.00 0.00 −0.01 −0.49 0.00

]
, Y = [ 4.51 3.52

3.52 4.55 ]

(11.37)
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G0 =




−0.33 0.67 −1.00 0.33 0.00 0.33
0.33 −0.67 1.00 −0.33 0.00 −0.33

−0.33 0.67 0.00 0.33 0.00 −0.67
0.33 −0.67 0.00 −0.33 0.00 −0.33
0.33 −0.67 0.00 −0.33 0.00 0.67

−0.33 0.67 0.00 0.33 0.00 0.33
0.00 0.00 0.00 0.00 0.00 −1.00
0.00 0.00 −1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 1.00 0.00 0.00 0.00

−0.33 0.67 0.00 0.33 0.00 −0.67
0.33 −0.67 0.00 −0.33 0.00 −0.33
0.33 −0.67 0.00 −0.33 0.00 0.67

−0.33 0.67 0.00 0.33 0.00 0.33
0.00 −1.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00

−0.67 0.33 0.00 0.67 0.00 −0.33
0.33 0.33 0.00 −0.33 0.00 −0.33
0.67 −0.33 0.00 −0.67 0.00 0.33

−0.33 −0.33 0.00 0.33 0.00 0.33
−0.67 0.33 0.00 0.67 0.00 −0.33
0.33 0.33 0.00 −0.33 0.00 −0.33
0.67 −0.33 0.00 −0.67 0.00 0.33

−0.33 −0.33 0.00 0.33 0.00 0.33
0.00 0.00 0.00 −1.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00

−1.00 0.00 0.00 0.00 0.00 0.00
0.33 0.33 0.00 0.67 0.00 −0.33
1.00 0.00 0.00 0.00 0.00 0.00

−0.33 −0.33 0.00 −0.67 0.00 0.33
−1.00 0.00 0.00 0.00 0.00 0.00
0.33 0.33 0.00 0.67 0.00 −0.33
1.00 0.00 0.00 0.00 0.00 0.00

−0.33 −0.33 0.00 −0.67 0.00 0.33
0.83 0.33 0.00 0.67 0.50 −0.33

−0.83 −0.33 0.00 −0.67 −0.50 0.33
−0.50 0.00 0.00 0.00 0.50 0.00
−0.50 0.00 0.00 0.00 −0.50 0.00
0.50 0.00 0.00 0.00 −0.50 0.00
0.50 0.00 0.00 0.00 0.50 0.00

−0.50 0.00 0.00 0.00 0.50 0.00
−0.50 0.00 0.00 0.00 −0.50 0.00
0.50 0.00 0.00 0.00 −0.50 0.00
0.50 0.00 0.00 0.00 0.50 0.00
0.00 0.00 0.00 0.00 −1.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

−0.50 0.00 0.00 0.00 0.50 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.00 0.00 0.00 −0.50 0.00
0.00 0.00 0.00 0.00 0.00 0.00

−0.50 0.00 0.00 0.00 0.50 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.00 0.00 0.00 −0.50 0.00

−0.50 0.00 0.00 0.00 0.50 0.00
0.50 0.00 0.00 0.00 −0.50 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 −0.93 0.00 0.00 −0.36
0.00 0.00 0.93 0.00 0.00 0.36
0.00 0.00 0.70 0.00 0.00 0.71
0.00 0.00 −0.70 0.00 0.00 −0.71




, E0 =




0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.50 0.50

−0.50 −0.50
0.50 0.50

−0.50 −0.50
−0.50 −0.50
0.50 0.50
0.50 0.50

−0.50 −0.50
−0.50 −0.50
0.50 0.50
0.00 0.00
0.00 0.00
1.00 1.00

−0.50 −0.50
−1.00 −1.00
0.50 0.50
1.00 1.00

−0.50 −0.50
−1.00 −1.00
0.50 0.50

−0.50 −1.50
0.50 1.50
1.00 0.00
0.00 1.00

−1.00 0.00
0.00 −1.00
1.00 0.00
0.00 1.00

−1.00 0.00
0.00 −1.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00




, W0 =




1.00
1.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
1.00
1.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
1.00
1.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
1.00
1.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
1.00
1.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
1.00
1.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
0.58
0.58
1.90
1.90




(11.38)

The corresponding polyhedral partition of the state-space is depicted in
Fig. 11.6(c). The RHC law is:
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u =





[−0.61 −1.61 ] x if




1.00 0.00
−1.00 0.00
−0.36 −0.93
0.36 0.93
0.71 0.70
−0.71 −0.70


x ≤




5.00
5.00
0.58
0.58
1.90
1.90


 (Region #1)

1.00 if




1.00 0.00
−0.71 −0.71
−0.21 −0.98
−0.32 −0.95
0.27 0.96
−1.00 0.00
0.23 0.97


x ≤




5.00
3.54
1.67
1.79
−1.13
5.00
−1.03


 (Region #2)

1.00 if
[−1.00 0.00
−0.23 −0.97
0.45 0.89

]
x ≤

[
5.00
1.03
−1.65

]
(Region #3)

1.00 if




1.00 0.00
−0.71 −0.71
−0.45 −0.89
−0.18 −0.98
0.18 0.98
−0.24 −0.97
0.21 0.98


x ≤




5.00
3.54
2.68
2.19
−1.62
2.10
−1.67


 (Region #4)

1.00 if




0.29 0.96
1.00 0.00
−1.00 0.00
−0.27 −0.96
−0.45 −0.89
0.36 0.93


x ≤




−0.36
5.00
5.00
1.13
1.65
−0.58


 (Region #5)

1.00 if
[

0.32 0.95
−0.71 −0.71
−0.18 −0.98

]
x ≤

[−1.79
3.54
1.62

]
(Region #6)

− 1.00 if




−1.00 0.00
0.71 0.71
0.21 0.98
0.32 0.95
−0.27 −0.96
1.00 0.00
−0.23 −0.97


x ≤




5.00
3.54
1.67
1.79
−1.13
5.00
−1.03


 (Region #7)

− 1.00 if
[

1.00 0.00
0.23 0.97
−0.45 −0.89

]
x ≤

[
5.00
1.03
−1.65

]
(Region #8)

− 1.00 if




−1.00 0.00
0.71 0.71
0.45 0.89
−0.18 −0.98
0.18 0.98
0.24 0.97
−0.21 −0.98


x ≤




5.00
3.54
2.68
−1.62
2.19
2.10
−1.67


 (Region #9)

− 1.00 if




−0.29 −0.96
1.00 0.00
−1.00 0.00
0.27 0.96
0.45 0.89
−0.36 −0.93


x ≤




−0.36
5.00
5.00
1.13
1.65
−0.58


 (Region #10)

− 1.00 if
[−0.32 −0.95

0.71 0.71
0.18 0.98

]
x ≤

[−1.79
3.54
1.62

]
(Region #11)

[−0.45 −1.44 ] x− 0.45 if
[

1.00 0.00
0.29 0.96
−0.71 −0.70

]
x ≤

[
5.00
0.36
−1.90

]
(Region #12)

[−0.45 −1.44 ] x + 0.45 if
[−1.00 0.00
−0.29 −0.96
0.71 0.70

]
x ≤

[
5.00
0.36
−1.90

]
(Region #13)
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Comparing the feasibility regions X0 in Figure 11.6 we notice that in Case
2 we obtain a larger region than in Case 1 and that in Case 3 we obtain a
feasibility region larger than Case 1 and Case 2. This can be easily explained
from the theory presented in this and the previous chapter. In particular
we have seen that if a control invariant set is chosen as terminal constraint
Xf , the size of the feasibility region increases with the number of control
moves (increase from Case 2 to Case 3) (Remark 10.8). Also, the size of the
feasibility region increases with the size of the target set (increase from Case
1 to Case 2).

11.5 State Feedback Solution of RHC, 1, ∞-Norm Case

The state feedback receding horizon controller (11.7)–(11.10) with cost (11.8)
for system (11.1) is

u(t) = f∗
0 (x(t)) (11.39)

where f∗
0 (x0) : Rn → Rm is the piecewise affine solution to the CFTOC (11.7)

and is computed as explained in Section 10.5. As in the 2-norm case the
explicit form (11.39) has the advantage of being easier to implement, and
provides insight into the type of control action in different regions CRi of the
state space.

Example 11.4. Consider the double integrator system (11.12) subject to the
input constraints

− 1 ≤ u(k) ≤ 1 (11.40)

and the state constraints
− 5 ≤ x(k) ≤ 5 (11.41)

We want to regulate the system to the origin by using the RHC con-
troller (11.7)–(11.10) with cost (11.9), p = ∞, Q = [ 1 0

0 1 ], R = 20. We con-
sider two cases:
Case 1. Xf = Rn, N = 6 (determinedness index+1) and P = Q
Case 2. Xf = Rn, N = 6 and P = ‖P∞‖∞ given in (9.34) measuring the
infinite-time unconstrained optimal cost in (9.32).

From Corollary 11.2 in both cases persistent feasibility is guaranteed for all
cost functions and X0 = C∞. However, in Case 1 the terminal cost P does not
satisfy (11.27) which is assumption (A3) in Theorem 11.2 and therefore the
convergence to and the stability of the origin cannot be guaranteed. In order
to satisfy Assumption (A3) in Theorem 11.2, in Case 2 we select the terminal
cost to be equal to the infinite-time unconstrained optimal cost computed in
Example 9.1.

Next we will detail the explicit solutions for the two cases.
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Case 1. The LP problem associated with the RHC has the form (10.75)
with Ḡ0 ∈ R124×18, S̄0 ∈ R124×2 and c′ = [06 112]. The corresponding poly-
hedral partition of the state-space is depicted in Fig. 11.7(a). The RHC law
is:

u =





if

[
0.16 0.99
−0.16 −0.99
−1.00 0.00
1.00 0.00

]
x ≤

[
0.82
0.82
5.00
5.00

]
(Region #1)

[−0.29 −1.71 ] x + 1.43 if

[
1.00 0.00
−0.16 −0.99
−1.00 0.00
0.16 0.99

]
x ≤

[
5.00
−0.82
5.00
1.40

]
(Region #2)

− 1.00 if




−0.16 −0.99
1.00 0.00
0.71 0.71
−1.00 0.00
0.20 0.98
0.16 0.99
0.24 0.97
0.45 0.89
0.32 0.95


 x ≤




−1.40
5.00
4.24
5.00
2.94
3.04
2.91
3.35
3.00


 (Region #3)

[−0.29 −1.71 ] x− 1.43 if

[−1.00 0.00
0.16 0.99
1.00 0.00
−0.16 −0.99

]
x ≤

[
5.00
−0.82
5.00
1.40

]
(Region #4)

1.00 if




−0.32 −0.95
−0.24 −0.97
−0.20 −0.98
−0.16 −0.99
−1.00 0.00
0.16 0.99
−0.71 −0.71
−0.45 −0.89
1.00 0.00


 x ≤




3.00
2.91
2.94
3.04
5.00
−1.40
4.24
3.35
5.00


 (Region #5)

The union of the regions depicted in Fig. 11.7(a) is X0 and is shown in
white in Fig. 11.7(c). Since N is equal to the determinedness index plus one,
X0 is a positive invariant set for the closed-loop system and thus persistent
feasibility is guaranteed for all x(0) ∈ X0. However, it can be noticed from
Fig. 11.7(c) that convergence to the origin is not guaranteed. Starting from
the initial conditions [-4,2], [-2, 2], [0, 0.5], [4,-2], [-1,-1] and [2,-0.5], the
closed-loop system converges to either [−5, 0] or [5, 0].

Case 2. The LP problem associated with the RHC has the form (10.75)
with Ḡ0 ∈ R174×18, S̄0 ∈ R174×2 and c′ = [06 112]. The RHC law is defined
over 21 regions and the corresponding polyhedral partition of the state-space
is depicted in Fig. 11.7(b).

The union of the regions depicted in Fig. 11.7(b) is X0 and is shown in
white in Fig. 11.7(d). Since N is equal to the determinedness index plus one,
X0 is a positive invariant set for the closed-loop system and thus persistent
feasibility is guaranteed for all x(0) ∈ X0. Convergence to the origin is also
guaranteed by the choice of P as shown by the closed-loop trajectories in
Fig. 11.7(d) starting from the same initial conditions as in Case 1.
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Idle Control and Multiple Optimizers∗

There are two potential problems with the RHC control law based on linear
programming: idle control and multiple solutions. The first corresponds to
the situation when the optimal move u(t) is always zero, the second to the
degeneracy of the LP problem. The explicit mp-LP approach allows us to
easily recognize both situations.

By analyzing the explicit solution of the RHC law, one can locate immedi-
ately the critical regions where the matrices F i

0, gi
0 in (11.39) are zero, i.e., idle

control. A different tuning of the controller is required when such polyhedral
regions appear and the overall performance is not satisfactory. The second
issue is the presence of multiple solutions, that might arise from the degener-
acy of the dual problem (6.14). Multiple optimizers are undesirable, as they
might lead to a fast switching between the different optimal control moves
when the optimization program (10.75) is solved on-line, unless interior-point
methods are used. The mp-LP solvers [106, 56] can detect critical regions of
degeneracy and partition them into sub-regions where a unique optimizer is
defined. Example 11.5 illustrates a RHC law where multiple optimizers and
idle control occur.

Example 11.5. Consider the double integrator of Example 11.4, with N = 1,

Q =

[
1 0
0 1

]
, R = 1, P = Q subject to the input constraints

U = {u : − 1 ≤ u ≤ 1} (11.42)

and the state constraints

X = {x :

[
−10
−10

]
≤ x ≤

[
10
10

]
} (11.43)

The associated mp-LP problem is

min
ε1,ε2,u0

ε1 + ε2

subj. to 


−1 0 1
−1 0 −1

0 −1 0
0 −1 −1
0 −1 0
0 −1 1
0 0 1
0 0 0
0 0 −1
0 0 0
0 0 1
0 0 −1







ε1
ε2
u0


 ≤




0
0
0
0
0
0
10
10
10
10
1
1




+




0 0
0 0
1 1
0 1
−1 −1

0 −1
0 −1
−1 −1

0 1
1 1
0 0
0 0




x(t)

(11.44)
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The solution of (11.44) gives rise to idle control and multiple optimizers.
In fact, the corresponding polyhedral partition of the state-space is de-

picted in Fig. 11.8. The RHC law is

u =





degenerate if

[−1.00 −2.00
1.00 0.00
1.00 1.00
−1.00 −1.00
0.00 1.00

]
x ≤

[
0.00
0.00
10.00
10.00
11.00

]
(Region #1)

0 if
[

1.00 0.00
1.00 2.00
−1.00 −1.00

]
x ≤

[
0.00
0.00
10.00

]
(Region #2)

degenerate if

[−1.00 0.00
1.00 2.00
1.00 1.00
−1.00 −1.00
0.00 −1.00

]
x ≤

[
0.00
0.00
10.00
10.00
11.00

]
(Region #3)

0 if
[−1.00 −2.00
−1.00 0.00
1.00 1.00

]
x ≤

[
0.00
0.00
10.00

]
(Region #4)

Note the presence of idle control in regions #2, #4 and multiple optimizers
in regions #1, #3. Two sub-partitions of the degenerate regions #1, #3 are
possible. Region #1 can be partitioned as

u1A =





0 if
[−1.00 0.00

1.00 2.00
0.00 −1.00

]
x ≤

[
0.00
0.00
10.00

]
(Region #1a)

[ 0.00 −1.00 ] x + 10.00 if

[
0.00 −2.00
1.00 1.00
−1.00 −1.00
0.00 1.00

]
x ≤

[−20.00
10.00
10.00
11.00

]
(Region #1b)

or

u1B =





− 1.00 if
[−1.00 −2.00

1.00 0.00
0.00 1.00

]
x ≤

[−1.00
−1.00
11.00

]
(Region #1a)

0 if

[
1.00 2.00
−1.00 −2.00
1.00 0.00
0.00 1.00

]
x ≤

[
1.00
0.00
0.00
10.00

]
(Region #1b)

[ 0.00 −1.00 ] x + 10.00 if
[

1.00 2.00
0.00 −2.00
−1.00 −1.00

]
x ≤

[
1.00

−20.00
10.00

]
(Region #1c)

0 if

[−1.00 0.00
−1.00 −2.00
1.00 0.00
0.00 1.00

]
x ≤

[
1.00
−1.00
0.00
10.00

]
(Region #1d)

[ 0.00 −1.00 ] x + 10.00 if
[−1.00 0.00

0.00 −2.00
1.00 1.00

]
x ≤

[
1.00

−20.00
10.00

]
(Region #1e)

Region #3 can be partitioned symmetrically as:
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u3A =





0 if
[−1.00 −2.00

1.00 0.00
0.00 1.00

]
x ≤

[
0.00
0.00
10.00

]
(Region #3a)

[ 0.00 −1.00 ] x− 10.00 if

[
0.00 2.00
1.00 1.00
−1.00 −1.00
0.00 −1.00

]
x ≤

[−20.00
10.00
10.00
11.00

]
(Region #3b)

or

u3B =





1.00 if
[−1.00 0.00

1.00 2.00
0.00 −1.00

]
x ≤

[−1.00
−1.00
11.00

]
(Region #3a)

0 if

[
1.00 0.00
−1.00 0.00
1.00 2.00
0.00 −1.00

]
x ≤

[
1.00
0.00
0.00
10.00

]
(Region #3b)

[ 0.00 −1.00 ] x− 10.00 if
[

1.00 0.00
0.00 2.00
−1.00 −1.00

]
x ≤

[
1.00

−20.00
10.00

]
(Region #3c)

0 if

[−1.00 −2.00
−1.00 0.00
1.00 2.00
0.00 −1.00

]
x ≤

[
1.00
−1.00
0.00
10.00

]
(Region #3d)

[ 0.00 −1.00 ] x− 10.00 if
[−1.00 −2.00

0.00 2.00
1.00 1.00

]
x ≤

[
1.00

−20.00
10.00

]
(Region #3e)

The two possible partitions with unique optimizer for problem (11.44) are
depicted in Figure 11.9. Note that controllers u1A and u3A are continuous in
Regions 1 and 3, respectively, while controllers u1B and u3B are discontinuous
in Regions 1 and 3, respectively.

11.6 RHC Extensions

In order to reduce the size of the optimization problem at the price of possibly
reduced performance, the basic RHC formulation (11.7) is often modified as
follows

min
U0

p(xNy) +

Ny−1∑

k=0

q(xk, uk)

subj. to xk+1 = Axk + Buk,t, k = 0, . . . , N
xk ∈ X , k = 0, . . . , Nc

uk ∈ U , k = 0, . . . , Nu

uk = Kxk, Nu ≤ k < Ny

(11.45)

where K is some feedback gain, Ny, Nu, Nc are the prediction, input, and
state constraint horizons, respectively, with Nu ≤ Ny and Nc ≤ Ny. This
formulation reduces the number of constraints and as a consequence makes
the long horizon prediction used in the optimization less accurate as it is
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not forced to obey all the constraints. As this approximation affects only the
states far in the future, it is hoped hat it will not affect significantly the
present control action. Note, however, that all the theoretical properties de-
rived for RHC do not hold for this approximate formulation as the constraints
sets X and U vary with time. For Theorem 11.2 to hold, for example, it is
essential that X and U are constant.

Formulation (11.45) can be extended naturally to situations where the
control task is more demanding. As long as the control task can be expressed
as an mp-QP or mp-LP, a piecewise affine controller results which can be
easily implemented. As an example the bounds ymin, ymax, δumin, δumax,
umin, umax may change depending on the operating conditions, or in the
case of a stuck actuator the constraints become δumin = δumax = 0. This
possibility can again be built into the control law. The bounds can be treated
as parameters in the QP and added to the vector x. The control law will have
the form u(t) = F (x(t), ymin, ymax, δumin, δumax, umin, umax).

Example 11.6.

11.7 Offset-Free Reference Tracking

This section describes how the RHC problem has to be formulated to track
constant references without offset under model mismatch. We distinguish be-
tween the number p of measured outputs, the number r of outputs which
one desires to track (called “tracked outputs”), and the number nd of dis-
turbances. First we summarize the conditions that need to be satisfied to
obtain offset-free RHC by using the arguments of the internal model prin-
ciple. Then we provide a simple proof of zero steady-state offset when
r ≤ p = nd. Extensive treatment of reference tracking for RHC can be
found in in [13, 201, 203, 204, 181]. Consider the discrete-time time-invariant
system 




xm(t + 1) = f(xm(t), u(t))
ym(t) = g(xm(t))

z(t) = Hym(t)
(11.46)

In (11.46), xm(t) ∈ Rn, u(t) ∈ Rm and ym(t) ∈ Rp are the state, input,
measured output vector, respectively. The controlled variables z(t) ∈ Rr are
a linear combination of the measured variables. Without any loss of generality
we assume H to have full row rank.

The objective is to design an RHC based on the linear system model (11.1)
of (11.46) in order to have z(t) track r(t), where r(t) ∈ Rp is the reference
signal, which we assume to converge to a constant, i.e. r(t)→ r∞ as t→∞.
We require zero steady-state tracking error, i.e., (z(t)− r(t))→ 0 for t→∞.



11.7 Offset-Free Reference Tracking 237

The Observer Design

The plant model (11.1) is augmented with a disturbance model in order to
capture the mismatch between (11.46) and (11.1) in steady state. Several
disturbance models have been presented in the literature [13, 190, 176, 204,
203, 268]. Here we follow [204] and use the form:





x(t + 1) = Ax(t) + Bu(t) + Bdd(t)
d(t + 1) = d(t)

y(t) = Cx(t) + Cdd(t)
(11.47)

with d(t) ∈ Rnd . With abuse of notation we have used the same symbols for
state and outputs of system (11.1) and system (11.47). Later we will focus
on specific versions of the model (11.47).

The observer estimates both states and disturbances based on this aug-
mented model. Conditions for the observability of (11.47) are given in the
following theorem.

Theorem 11.3. [199, 200, 204, 13] The augmented system (11.47) is ob-
servable if and only if (C, A) is observable and

[
A− I Bd

C Cd

]
(11.48)

has full column rank.

Proof: From the Hautus observability condition system (11.47) is ob-
servable iff [

A′ − λI 0 C′

B′
d I − λI C′

d

]
has full row rank ∀λ (11.49)

Again from the Hautus condition, the first set of rows is linearly independent
iff (C, A) is observable. The second set of rows is linearly independent from
the first n rows except possibly for λ = 1. Thus, for the augmented system
the Hautus condition needs to be checked for λ = 1 only, where it becomes
(11.48). 2

Remark 11.4. Note that for condition (11.48) to be satisfied the number of
disturbances in d needs to be smaller or equal to the number of available
measurements in y, nd 6 p. Condition (11.48) can be nicely interpreted. It
requires that the model of the disturbance effect on the output d → y must
not have a zero at (1, 0). Alternatively we can look at the steady state of
system (11.47) [

A− I Bd

C Cd

] [
x∞
d∞

]
=

[
0

y∞

]
(11.50)

where we have denoted the steady state values with a subscript ∞ and have
omitted the forcing term u for simplicity. We note that from the observability
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condition (11.48) for system (11.47) equation (11.50) is required to have a
unique solution, which means, that we must be able to deduce a unique value
for the disturbance d∞ from a measurement of y∞ in steady state.

The following corollary follows directly from Theorem 11.3.

Corollary 11.3. The augmented system (11.47) with nd = p and Cd = I is
observable if and only if (C, A) is observable and

det

[
A− I Bd

C I

]
= det(A− I −BdC) 6= 0. (11.51)

Remark 11.5. We note here how the observability requirement restricts the
choice of the disturbance model. If the plant has no integrators, then
det (A− I) 6= 0 and we can choose Bd = 0. If the plant has integrators
then Bd has to be chosen specifically to make det (A− I −BdC) 6= 0.

The state and disturbance estimator is designed based on the augmented
model as follows:
[

x̂(t + 1)

d̂(t + 1)

]
=

[
A Bd

0 I

] [
x̂(t)

d̂(t)

]
+

[
B
0

]
u(t)+

[
Lx

Ld

]
(−ym(t)+Cx̂(t)+Cdd̂(t))

(11.52)
where Lx and Ld are chosen so that the estimator is stable. We remark that
the results below are independent of the choice of the method for computing
Lx and Ld. We then have the following property.

Lemma 11.4. Suppose the observer (11.52) is stable. Then, rank(Ld) = nd.

Proof: From (11.52) it follows

[
x̂(t + 1)

d̂(t + 1)

]
=

[
A + LxC Bd + LxCd

LdC I + LdCd

] [
x̂(t)

d̂(t)

]
+

[
B
0

]
u(t)−

[
Lx

Ld

]
ym(t)

(11.53)
By stability, the observer has no poles at (1, 0) and therefore

det

([
A− I + LxC Bd + LxCd

LdC LdCd

])
6= 0 (11.54)

For (11.54) to hold, the last nd rows of the matrix have to be of full row
rank. A necessary condition is that Ld has full row rank. 2

In the rest of this section, we will focus on the case nd = p.

Lemma 11.5. Suppose the observer (11.52) is stable. Choose nd = p. The
steady state of the observer (11.52) satisfies:

[
A− I B

C 0

] [
x̂∞
u∞

]
=

[
−Bdd̂∞

ym,∞ − Cdd̂∞

]
(11.55)
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where ym,∞ and u∞ are the steady state measured output and input of the

system (11.46), x̂∞ and d̂∞ are state and disturbance estimates from the
observer (11.52) at steady state, respectively.

Proof: From (11.52) we note that the disturbance estimate d̂ converges

only if Ld(−ym,∞ + Cx̂∞ + Cdd̂∞) = 0. As Ld is square by assumption and
nonsingular by Lemma 11.4 this implies that at steady state, the observer
estimates (11.52) satisfy

− ym,∞ + Cx̂∞ + Cdd̂∞ = 0 (11.56)

Equation (11.55) follows directly from (11.56) and (11.52). 2

The MPC design

Denote by z∞ = Hym,∞ and r∞ the tracked measured outputs and their
references at steady state, respectively. For offset-free tracking at steady state
we want z∞ = r∞. The observer condition (11.55) suggests that at steady
state the MPC should satisfy

[
A− I B
HC 0

] [
x∞
u∞

]
=

[
−Bdd̂∞

r∞ −HCdd̂∞

]
(11.57)

where x∞ is the MPC state at steady state. For x∞ and u∞ to exist for any

d̂∞ and r∞ the matrix

[
A− I B
HC 0

]
must be of full row rank which implies

m ≥ r.
The MPC is designed as follows

minU0 (xN − x̄t)
′P (xN − x̄t) +

N−1∑

k=0

(xk − x̄t)
′Q(xk − x̄t) + (uk − ūt)

′R(uk − ūt)

subj. to xk+1 = Axk + Buk + Bddk, k = 0, . . . , N
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

dk+1 = dk, k = 0, . . . , N
x0 = x̂(t)

d0 = d̂(t),
(11.58)

with the targets ūt and x̄t given by

[
A− I B
HC 0

] [
x̄t

ūt

]
=

[
−Bdd̂(t)

r(t) −HCdd̂(t)

]
(11.59)

and where ‖x‖2M , x′Mx, Q � 0, R ≻ 0, and P ≻ 0.
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Let U∗(t) = {u∗
0, . . . , u

∗
N−1} be the optimal solution of (11.58)-(11.59) at

time t. Then, the first sample of U∗(t) is applied to system (11.46)

u(t) = u∗
0. (11.60)

Denote by c0(x̂(t), d̂(t), r(t)) = u∗
0(x̂(t), d̂(t), r(t)) the control law when the

estimated state and disturbance are x̂(t) and d̂(t), respectively. Then the
closed-loop system obtained by controlling (11.46) with the MPC (11.58)-
(11.59)-(11.60) and the observer (11.52) is:

x(t + 1) = f(x(t), c0(x̂(t), d̂(t), r(t)))

x̂(t + 1) = (A + LxC)x̂(t) + (Bd + LxCd)d̂(t) + Bc0(x̂(t), d̂(t), r(t)) − Lxym(t)

d̂(t + 1) = LdCx̂(t) + (I + LdCd)d̂(t)− Ldym(t)
(11.61)

Often in practice, one desires to track all measured outputs with zero
offset. Choosing nd = p = r is thus a natural choice. Such zero-offset property
continues to hold if only a subset of the measured outputs are to be tracked,
i.e., nd = p > r. Next we provide a very simple proof for offset-free control
when nd = p.

Theorem 11.4. Consider the case nd = p. Assume that for r(t) → r∞ as
t → ∞, the MPC problem (11.58)-(11.59) is feasible for all t ∈ N+, uncon-
strained for t ≥ j with j ∈ N+ and the closed-loop system (11.61) converges

to x̂∞, d̂∞, ym,∞, i.e., x̂(t) → x̂∞, d̂(t) → d̂∞, ym(t) → ym,∞ as t → ∞.
Then z(t) = Hym(t)→ r∞ as t→∞.

Proof: Consider the MPC problem (11.58)-(11.59). At steady state u(t) →
u∞ = c0(x̂∞, d̂∞, r∞), x̄t → x̄∞ and ūt → ū∞. Note that the steady state
controller input u∞ (computed and implemented) might be different from
the steady state target input ū∞.

The asymptotic values x̂∞, x̄∞, u∞ and ū∞ satisfy the observer conditions
(11.55) [

A− I B
C 0

] [
x̂∞
u∞

]
=

[
−Bdd̂∞

ym,∞ − Cdd̂∞

]
(11.62)

and the controller requirement (11.59)

[
A− I B
HC 0

] [
x̄∞
ū∞

]
=

[
−Bdd̂∞

r∞ −HCdd̂∞

]
(11.63)

Define δx = x̂∞ − x̄∞, δu = u∞ − ū∞ and the offset ε = z∞ − r∞. Notice
that the steady state target values x̄∞ and ū∞ are both functions of r∞ and
d̂∞ as given by (11.63). Left multiplying the second row of (11.62) by H and
subtracting (11.63) from the result, we obtain

(A− I)δx + Bδu = 0
HCδx = ε.

(11.64)
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Next we prove that δx =0 and thus ε = 0.
Consider the MPC problem (11.58)-(11.59) and the following change of

variables δxk = xk − x̄t, δuk = uk − ūt. Notice that Hyk − r(t) = HCxk +
HCddk − r(t) = HCδxk + HCx̄t + HCddk − r(t) = HCδxk from condition

(11.59) with d̂(t) = dk. Similarly, one can show that δxk+1 = Aδxk + Bδuk.
Then, the MPC problem (11.58) becomes:

minδu0,...,δuN−1 δx′
NPδxN +

N−1∑

k=0

δx′
kQδxk + δu′

kRδuk

subj. to δxk+1 = Aδxk + Bδuk, 0 ≤ k ≤ N
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

δx0 = δx(t),
δx(t) = x̂(t)− x̄t.

(11.65)

Denote by KMPC the unconstrained MPC controller (11.65), i.e., δu∗
0 =

KMPCδx(t). At steady state δu∗
0 → u∞ − ū∞ = δu and δx(t)→ x̂∞ − x̄∞ =

δx. Therefore, at steady state, δu = KMPCδx. From (11.64)

(A− I + BKMPC)δx = 0. (11.66)

By assumption the unconstrained system with the MPC controller converges.
Thus KMPC is a stabilizing control law, which implies that (A−I+BKMPC)
is nonsingular and hence δx = 0. 2

Remark 11.6. Theorem 11.4 was proven in [204] by using a different approach.

Remark 11.7. Theorem 11.4 can be extended to prove local Lyapunov stabil-
ity of the closed-loop system (11.61) under standard regularity assumptions
on the state update function f in (11.61) [185].

Remark 11.8. The proof of Theorem 11.4 assumes only that the models used
for the control design (11.1) and the observer design (11.47) are identical
in steady state in the sense that they give rise to the same relation z =
z(u, d, r). It does not make any assumptions about the behavior of the real
plant (11.46), i.e. the model-plant mismatch, with the exception that the
closed-loop system (11.61) must converge to a fixed point. The models used
in the controller and the observer could even be different as long as they
satisfy the same steady state relation.

Remark 11.9. If condition (11.59) does not specify x̄t and ūt uniquely, it is
customary to determine x̄t and ūt through an optimization problem, for ex-
ample, minimizing the magnitude of ūt subject to the constraint (11.59) [204].

Remark 11.10. Note that in order to achieve no offset we augmented the
model of the plant with as many disturbances (and integrators) as we have
measurements (nd = p) (cf. equation (11.53)). Our design procedure requires
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the addition of p integrators even if we wish to control only a subset of r < p
measured variables. This is actually not necessary as we suspect from basic
system theory. The design procedure for the case nd = r < p is, however,
more involved.

If the 2-norm in the objective function of (11.58) is replaced with a 1 or∞
norm (‖P (xN − x̄t)‖p +

∑N−1
k=0 ‖Q(xk− x̄t)‖p +‖R(uk− ūt)‖p, where p = 1 or

p =∞), then our results continue to hold. In particular, Theorem 11.4 con-
tinues to hold. In fact, the unconstrained MPC controlled KMPC in (11.65)
is piecewise linear around the origin [40]. In particular, around the origin,
δu∗(t) , δu∗

0 = KMPC(δx(t)) is a continuous piecewise linear function of the
state variation δx:

KMPC(δx) = F jδx if Hjδx ≤ Kj, j = 1, . . . , N r, (11.67)

where Hj and Kj in equation (11.67) are the matrices describing the j-th
polyhedron CRj = {δx ∈ Rn|Hjδx ≤ Kj} inside which the feedback optimal
control law δu∗(t) has the linear form F jδx(k). The polyhedra CRj , j =
1, . . . , N r are a partition of the set of feasible states of problem (11.58) and
they all contain the origin. For Theorem 11.4 to hold, it is sufficient to require
that all the linear feedback laws F jδx(k) for i = j, . . . , Nr are stabilizing.

Explicit Controller

Examining (11.58), (11.59) we note that the control law depends on x̂(t),

d̂(t) and r(t). Thus in order to achieve offset free tracking of r outputs out of

p measurements we had to add the p + r “parameters” d̂(t) and r(t) to the
usual parameters x̂(t).

There are more involved RHC design techniques to obtain offset-free con-
trol for models with nd < p and in particular, with minimum order distur-
bance models nd = r. The total size of the parameter vector can thus be
reduced to n + 2r. This is significant only if a small subset of the plant out-
puts are to be controlled. A greater reduction of parameters can be achieved
by the following method. By Corollary 11.3, we are allowed to choose Bd = 0
in the disturbance model if the plant has no integrators. Recall the target
conditions 11.59 with Bd = 0

[
A− I B
HC 0

] [
x̄t

ūt

]
=

[
0

r(t) −HCdd̂(t)

]
. (11.68)

Clearly, any solution to (11.68) can be parameterized by r(t)−HCdd̂(t). The

explicit control law is written as u(t) = c0(x̂(t), r(t) − HCdd̂(t)), with only
n + r parameters. Since the observer is unconstrained, complexity is much
less of an issue. Hence, a full disturbance model with nd = p can be chosen
to yield offset-free control.
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Remark 11.11. The choice of Bd = 0 might be limiting in practice. In [257],
the authors have shown that for a wide range of systems, if Bd = 0 and the
observer is designed through a Kalman filter, then the closed-loop system
might suffer a dramatic performance deterioration.

Delta Input (δu) Formulation.

In the δu formulation, the MPC scheme uses the following linear time-
invariant system model of (11.46):





x(t + 1) = Ax(t) + Bu(t)
u(t) = u(t− 1) + δu(t)
y(t) = Cx(t)

(11.69)

System (11.69) is controllable if (A, B) is controllable. The δu formulation
often arises naturally in practice when the actuator is subject to uncertainty,
e.g. the exact gain is unknown or is subject to drift. In these cases, it can be
advantageous to consider changes in the control value as input to the plant.
The absolute control value is estimated by the observer, which is expressed
as follows
[

x̂(t + 1)
û(t + 1)

]
=

[
A B
0 I

] [
x̂(t)
û(t)

]
+

[
B
I

]
δu(t)+

[
Lx

Lu

]
(−ym(t)+Cx̂(t)) (11.70)

The MPC problem is readily modified

minδu0,...,δuN−1 ‖yk − rk‖2Q + ‖δuk‖2R
subj. to xk+1 = Axk + Buk, k ≥ 0

yk = Cxk k ≥ 0
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

uk = uk−1 + δuk, k ≥ 0
u−1 = û(t)
x0 = x̂(t)

(11.71)

The control input applied to the system is

u(t) = δu∗
0 + u(t− 1). (11.72)

The input estimate û(t) is not necessarily equal to the actual input u(t).
This scheme inherently achieves offset-free control, there is no need to add
a disturbance model. To see this, we first note that δu∗

0 = 0 in steady-state.
Hence our analysis applies as the δu formulation is equivalent to a disturbance
model in steady-state. This is due to the fact that any plant/model mismatch
is lumped into û(t). Indeed this approach is equivalent to an input disturbance
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model (Bd = B, Cd = 0). If in (11.71) the measured u(t) were substituted
for its estimate, i.e. u−1 = u(t− 1), then the algorithm would show offset.

In this formulation the computation of a target input ūt and state x̄t is
not required. A disadvantage of the formulation is that it is not applicable
when there is an excess of manipulated variables u compared to measured
variables y, since detectability of the augmented system (11.69) is then lost.

Minimum-Time Controller

In minimum-time control, the cost function minimizes the predicted number
of steps necessary to reach a target region, usually the invariant set asso-
ciated to the unconstrained LQR controller [155]. This scheme can reduce
the on-line computation time significantly, especially for explicit controllers
(Section 10.6). While minimum-time MPC is computed and implemented dif-
ferently from standard MPC controllers, there is no difference between the
two control schemes at steady-state. In particular, one can choose the tar-
get region to be the unconstrained region of (11.58). When the state and
disturbance estimates and reference are within this region, the control law
is switched to (11.58). The analysis and methods presented in this section
therefore apply directly.

11.8 Literature Review

Although the basic idea of receding horizon control was already indicated
by the theoretical work of Propoi [215] in 1963 it did not gain much at-
tention until the mid-1970s, when Richalet and coauthors [223, 224] pro-
posed the MPC technique (they called it “Model Predictive Heuristic Con-
trol (MPHC)”). Shortly thereafter, Cutler and Ramaker [83] introduced the
predictive control algorithm called Dynamic Matrix Control (DMC) which
has been hugely successful in the petro-chemical industry. A vast variety
of different names and methodologies followed, such as Quadratic Dynamic
Matrix Control (QDMC), Adaptive Predictive Control (APC), Generalized
Predictive Control (GPC), Sequential Open Loop Optimization (SOLO), and
others.

While the mentioned algorithms are seemingly different, they all share the
same structural features: a model of the plant, the receding horizon idea,
and an optimization procedure to obtain the control action by optimizing
the system’s predicted evolution.

For complex constrained multivariable control problems, model predictive
control has become the accepted standard in the process industries [216].
If in the finite time optimal control problem solved by MPC at each time
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step, system model and constraints are linear and the performance index is
expressed as weighted sum of 2-norm, 1-norm or ∞-norm vectors, then the
resulting optimization problem can be cast as a quadratic program (QP) or
linear program (LP), respectively, for which a rich variety of efficient active-
set and interior-point solvers are available.

Some of the first industrial MPC algorithms like IDCOM [224] and
DMC [83] were developed for constrained MPC with quadratic performance
indices. However, in those algorithms input and output constraints were
treated in an indirect ad-hoc fashion. Only later, algorithms like QDMC [109]
overcame this limitation by employing quadratic programming to solve con-
strained MPC problems with quadratic performance indices. Later an exten-
sive theoretical effort was devoted to analyze such schemes, provide condi-
tions for guaranteeing feasibility and closed-loop stability, and highlight the
relations between MPC and the linear quadratic regulator (see the recent
survey [188]).

An extensive treatment of conditions for feasibility and stability of MPC can
also be found in the surveys [188, 187]. Theorem 11.2 in this book presents
the main result on feasibility and stability of MPC ant it has been extracted
from [188, 187]. The main idea of Theorem 11.2 dates back to Keerthi and
Gilbert [157], the first to propose specific choices of a terminal cost P and
a terminal constraint Xf , namely Xf = 0 and P = 0. Under this assump-
tion (and a few other mild ones) Keerthi and Gilbert prove the stability for
general nonlinear performance functions and nonlinear models. The work of
Keerthi and Gilbert has been followed by a number of stability result for
RHC including the one in [157, 30, 1, 144, 78]. If properly analyzed all these
results have the main components required in Theorem 11.2.
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(c) Setting 3 : N = 4, R = 1

Fig. 11.4 Example 11.2. Closed-loop trajectories for different settings of horizon N
and weight R. Boxes (Circles) are initial points leading (not leading) to feasible
closed-loop trajectories.
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Fig. 11.5 Example 11.2. Maximal positive invariant sets O∞ for different parameter
settings: Setting 1 (origin), Setting 2 (dark-gray) and Setting 3 (gray and dark-gray).
Also depicted is the maximal control invariant set C∞ (white and gray and dark-gray).
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Fig. 11.6 Double integrator Example (11.3)
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Fig. 11.7 Double integrator Example (11.4)
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Fig. 11.8 Polyhedral partition of the state-space corresponding to the PPWA solu-
tion to problem (11.44)

-25 -20 -15 -10 -5 0 5 10 15 20 25

-15

-10

-5

0

5

10

15

1a

2 4

3a

1b

3b

x 2

x
1

(a) A possible solution of Exam-
ple 11.5 obtained by choosing, for
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Fig. 11.9 ∞-Norm control of the double integrator in Example 11.5: example of
degeneracy
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12.1 Introduction

A control system is robust when the performance specifications are met for
a specified range of model variations and a class of disturbance signals (un-
certainty range). A typical robust strategy involves solving a min-max prob-
lem to optimize worst-case performance while enforcing input and state con-
straints for all possible disturbances. This chapter shows how to formulate
and compute the state feedback solutions to min-max robust constrained
optimal control problems for systems affected by additive bounded input dis-
turbances and/or polyhedral parametric uncertainty.

Before formulating the robust finite time optimal control problem, we first
introduce some fundamental concepts of robust set invariance theory.

12.2 Robust Invariant Sets

In this section we deal with two types of systems, namely, autonomous sys-
tems

x(k + 1) = fa(x(k), w(k)), (12.1)

and systems subject to external controllable inputs

x(k + 1) = f(x(k), u(k), w(k)). (12.2)

Both systems are subject to the disturbance w(k) and to the constraints

x(k) ∈ X , u(k) ∈ U , w(k) ∈ W ∀ k ≥ 0. (12.3)

The sets X and U andW are polytopes and contain the origin in their interior.
For the autonomous system (12.1) we will denote the one-step robust

reachable set for initial states x contained in the set S as

Reach(S,W) , {x ∈ Rn : ∃ x(0) ∈ S, ∃ w ∈ W such that x = fa(x(0), w)}.

For the system (12.2) with inputs we will denote the one-step robust reachable
set for initial states x contained in the set S as

Reach(S,W) , {x ∈ Rn : ∃ x(0) ∈ S, ∃ u ∈ U , ∃ w ∈ W , such that x = f(x(0), u, w)}.

Thus, all the states contained in S are mapped into the set Reach(S,W)
under the map fa for all disturbances w ∈ W , and under the map f for all
inputs u ∈ U and for all disturbances w ∈ W .

“Pre” sets are the dual of one-step robust reachable sets.

Pre(S,W) , {x ∈ Rn : fa(x, w) ∈ S, ∀w ∈ W} (12.4)
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defines the set of system (12.1) states which evolve into the target set S in
one time step for all possible disturbance w ∈ W .

Similarly, for the system (12.2) the set of states which can be robustly
driven into the target set S in one time step is defined as

Pre(S,W) , {x ∈ Rn : ∃u ∈ U s.t. f(x, u, w) ⊆ S, ∀w ∈ W}. (12.5)

Computation of Robust Pre and Reach for Linear Systems
without Inputs

Example 12.1. Consider the second order autonomous system

x(t + 1) = Ax(t) + w(t) =

[
0.5 0
1 −0.5

]
x(t) + w(t) (12.6)

subject to the state constraints

x(t) ∈ X =

{
x :

[
−10
−10

]
≤ x ≤

[
10
10

]}
, ∀t ≥ 0 (12.7)

and where the additive disturbance belongs to the set

w(t) ∈ W =

{
w :

[
−1
−1

]
≤ w ≤

[
1
1

]}
, ∀t ≥ 0. (12.8)

The set Pre(X ,W) can be obtained as described next. Since the set X is a
polytope, it can be represented as an H-polytope (Section 3.2)

X = {x : Hx ≤ h}, (12.9)

where

H =




1 0
0 1
−1 0
0 −1


 and h =




10
10
10
10


 .

By using this H-presentation and the system equation (12.6), the set
Pre(X ,W) can be rewritten as

Pre(X ,W) =
{
x : Hfa(x, w) ≤ h, ∀w ∈ W

}
(12.10a)

= {x : HAx ≤ h−Hw, ∀w ∈ W} . (12.10b)

The set (12.10) can be represented as a the following polyhedron

Pre(X ,W) = {x ∈ Rn : HAx ≤ h̃} (12.11)
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with
h̃i = min

w∈W
(hi −Hiw). (12.12)

In general, a linear program is required to solve problems (12.12). In this

example Hi and W have simple expressions and we get h̃ =




9
9
9
9


. The set

(12.11) might contain redundant inequalities which can be removed by using
Algorithm 3.1 in Section 3.4.4 to obtain its minimal representation.

The set Pre(X ,W) is

Pre(X ,W) =





x :




1 0
1 −0.5
−1 0
−1 −0.5


x ≤




18
9
18
9








.

The set Pre(X ,W)∩X , the significance of which we will discuss below, is

Pre(X ,W) ∩ X =





x :




1 0
0 1
−1 0
0 −1
1 −0.5
−1 0.5




x ≤




10
10
10
10
9
9








and is depicted in Fig. 12.1.
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Fig. 12.1 Example 12.1: Pre(X ,W) ∩X for system (12.6) under constraints (12.7)-
(12.8).

Note that by using the definition of Pontryagin difference given in Sec-
tion 3.4.8 and affine operations on polyhedra in Section 3.4.11 we can com-
pactly summarize the operations in (12.10) and write the set Pre in (12.4)
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as

Pre(X ,W) = {x ∈ Rn : Ax + w ∈ S, ∀w ∈ W} = {x ∈ Rn : Ax ∈ S ⊖W} =
= (X ⊖W) ◦A.

The set

Reach(X ,W) = {y : ∃x ∈ X , ∃w ∈ W such that y = Ax + w} (12.13)

is obtained by applying the map A to the set X and then considering the
effect of the disturbance w ∈ W . Let us write X in V-representation (see
section 3.1)

X = conv(V ), (12.14)

and let us map the set of vertices V through the transformation A. Because
the transformation is linear, the composition of the map A with the set X ,
denoted as A ◦ X , is simply the convex hull of the transformed vertices

A ◦ X = conv(AV ). (12.15)

We refer the reader to Section 3.4.11 for a detailed discussion on linear trans-
formations of polyhedra. Rewrite (12.13) as

Reach(X ,W) = {y ∈ Rn : ∃ z ∈ A ◦ X , ∃w ∈ W such that y = z + w}.

We can use the definition of Minkowski sum given in Section 3.4.9 and rewrite
the Reach set as

Reach(X ,W) = (A ◦ X )⊕W .

We can compute the Minkowski sum via projection or vertex enumeration as
explained in Section 3.4.9. The set Reach(X ,W) in H-representation is

Reach(X ,W) =





x :




1 −0.5
0 −1
−1 0
−1 0.5
0 1
1 0




x ≤




4
16
6
4
16
6








,

and is depicted in Fig. 12.2.

Computation of Robust Pre and Reach Sets for Linear Systems
with Inputs

Example 12.2. Consider the second order unstable system
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x1
x
2

X

Reach(X ,X )

-10 0 10

-10

0

10

Fig. 12.2 Example 12.1: one-step reachable set for system (12.6) under constraints
(12.8).

{
x(t + 1) = Ax + Bu =

[
1.5 0
1 −1.5

]
x(t) +

[
1
0

]
u(t) + w(t) (12.16)

subject to the input and state constraints

u(t) ∈ U = {u : − 5 ≤ u ≤ 5} , ∀t ≥ 0 (12.17a)

x(t) ∈ X =

{
x :

[
−10
−10

]
≤ x ≤

[
10
10

]}
, ∀t ≥ 0 (12.17b)

where
w(t) ∈ W = {w : − 1 ≤ w ≤ 1} , ∀t ≥ 0 (12.18)

For the non-autonomous system (12.16), the set Pre(X ,W) can be com-
puted using the H-presentation of X and U ,

X = {x : Hx ≤ h}, U = {u : Huu ≤ hu}, (12.19)

to obtain

Pre(X ,W) =
{
x ∈ R2 : ∃u ∈ U s.t. Ax + Bu + w ∈ X , ∀ w ∈ W

}
(12.20a)

=

{
x ∈ R2 : ∃u ∈ R s.t.

[
HA HB
0 Hu

](
x
u

)
≤
[
h−Hw

hu

]
, ∀ w ∈ W

}
.

(12.20b)

As in example (12.1), the set Pre(X ,W) can be compactly written as

Pre(X ,W) =

{
x ∈ R2 : ∃u ∈ R s.t.

[
HA HB
0 Hu

](
x
u

)
≤
[

h̃
hu

]}
.(12.21)

where
h̃i = min

w∈W
(hi −Hiw). (12.22)
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In general, a linear program is required to solve problems (12.22). In this

example Hi and W have simple expressions and we get h̃ =




9
9
9
9


.

The halfspaces in (12.21) define a polytope in the state-input space, and a
projection operation (see Section 3.4.6) is used to derive the halfspaces which
define Pre(X ) in the state space. The set Pre(X )∩X is depicted in Fig. 12.3
and reported below: 



1 0
−1 0
1 −1.5
−1 1.5
0 1
0 −1




x ≤




9.3
9.3
9
9
10
10



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Fig. 12.3 Example 12.2: Pre(X ,W)∩X for system (12.16) under constraints (12.17)-
(12.18).

Note that by using the definition of a Minkowski sum given in Section 3.4.9
and the affine operation on polyhedra in Section 3.4.11 we can compactly
write the operations in (12.20) as follows:

Pre(X ,W) = {x : ∃u ∈ U s.t. Ax + Bu + w ∈ X , ∀ w ∈ W}
= {x : ∃y ∈ X , ∃u ∈ U s.t. y = Ax + Bu + w, ∀ w ∈ W}
= {x : ∃y ∈ X , ∃u ∈ U s.t. Ax = y + (−Bu)− w, ∀ w ∈ W}
= {x : Ax ∈ C and C = X ⊕ (−B) ◦ U ⊖W}
= {x : x ∈ C ◦A, C = X ⊕ (−B) ◦ U ⊖W}
= {x : x ∈ ((X ⊖W)⊕ (−B ◦ U)) ◦A} .

(12.23)
Note that in (12.23) we have used the fact that if a set S is described as
S = {v : ∃z ∈ Z, s.t. v = z−w, ∀ w ∈ W}, then S = {v : ∃z ∈ Z, s.t. z =
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v + w, ∀ w ∈ W} or S = {v : v + w ∈ Z, ∀ w ∈ W} = Z ⊖W .

The set Reach(X ,W) = {y : ∃x ∈ X , ∃u ∈ U , ∃w ∈ W s.t. y =
Ax + Bu + w} is obtained by applying the map A to the set X and then
considering the effect of the input u ∈ U and of the disturbance w ∈ W . We
can use the definition of Minkowski sum given in Section 3.4.9 and rewrite
Reach(X ,W) as

Reach(X ,W) = (A ◦ X )⊕ (B ◦ U)⊕W .

Remark 12.1. In summary, for linear systems with additive disturbances the
sets Pre(X ,W) and Reach(X ,W) are the results of linear operations on the
polytopes X , U and W and therefore are polytopes. By using the defini-
tion of Minkowski sum given in Section 3.4.9, Pontryagin difference given
in Section 3.4.8 and affine operation on polyhedra in Section 3.4.11 we can
compactly summarize the operations in Table 12.1.

x(t + 1) = Ax(t) + w(t) x(k + 1) = Ax(t) + Bu(t) + w(t)
Pre(X ,W) (X ⊖W) ◦A (X ⊖W ⊕−B ◦ U) ◦A

Reach(X ),W (A ◦ X ) ⊕W (A ◦ X ) ⊕ (B ◦ U)⊕W

Table 12.1 Pre and Reach operations for uncertain linear systems subject to poly-
hedral input and state constraints x(t) ∈ X , u(t) ∈ U with additive polyhedral
disturbances w(t) ∈ W

Remark 12.2. Note that the summary in remark (12.1) applies also to the
class of systems x(k + 1) = Ax(t) +Bu(t)+ Ed̃(t) where d̃ ∈ W̃ . This can be
transformed into x(k + 1) = Ax(t) + Bu(t) + w(t) where w ∈ W , E ◦ W̃ .

Computation of Robust Pre and Reach for Linear Systems with
Parametric Uncertainty

The following proposition will help us computing Pre and Reach sets for
linear systems with parametric uncertainty.

Proposition 12.1. Let g : Rnz ×Rn ×Rnw → Rng be a function of (z, x, w)
convex in w for each (z, x). Assume that the variable w belongs to the polytope
W with vertices {w̄i}nW

i=1. Then, the constraint

g(z, x, w) ≤ 0 ∀w ∈ W (12.24)

is satisfied if and only if
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g(z, x, w̄i) ≤ 0, i = 1, . . . , nW . (12.25)

Proof: Easily follows by the fact that the maximum of a convex function
over a compact convex set is attained at an extreme point of the set. 2

The following proposition shows how to reduce the number of constraints
in (12.25) for a specific class of constraint functions.

Proposition 12.2. Assume g(z, x, w) = g1(z, x) + g2(w). Then, the con-

straint (12.24) can be replaced by g(z, x) ≤ −ḡ, where ḡ ,
[
ḡ1, . . . , ḡng

]′
is a

vector whose i-th component is

ḡi = max
w∈W

g2
i (w), (12.26)

and g2
i (w) denotes the i-th component of g2(w).

Example 12.3. Consider the second order autonomous system

x(t + 1) = A(wp(t))x(t) + wa(t) =

[
0.5 + wp(t) 0

1 −0.5

]
x(t) + wa(t)

(12.27)
subject to the state constraints

x(t) ∈ X =

{
x :

[
−10
−10

]
≤ x ≤

[
10
10

]}
, ∀t ≥ 0

wa(t) ∈ Wa =

{
wa :

[
−1
−1

]
≤ wa ≤

[
1
1

]}
, ∀t ≥ 0

wp(t) ∈ Wp = {wp : 0 ≤ wp ≤ 0.5} , ∀t ≥ 0.

(12.28)

Let w = [wa; wp] andW =Wa×Wp. The set Pre(X ,W) can be obtained as
follows. The set X is a polytope and it can be represented as an H-polytope
(Section 3.2)

X = {x : Hx ≤ h}, (12.29)

where

H =




1 0
0 1
−1 0
0 −1


 and h =




10
10
10
10


 .

By using this H-presentation and the system equation (12.27), the set
Pre(X ,W) can be rewritten as

Pre(X ,W) =
{
x : Hfa(x, w) ≤ h, ∀w ∈ W

}
(12.30)

= {x : HA(wp)x ≤ h−Hwa, ∀wa ∈ Wa, wp ∈ Wp} .
(12.31)
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By using Propositions 12.1 and 12.2, the set (12.31) can be rewritten as a
the polytope

x ∈ Pre(X ,W) = {x ∈ Rn :

[
HA(0)

HA(0.5)

]
x ≤

[
h̃

h̃

]
} (12.32)

with
h̃i = min

wa∈Wa
(hi −Hiw

a). (12.33)

The set Pre(X ,W) ∩ X is depicted in Fig. 12.4 and reported below:




1 0
0.89 −0.44
1 0

−0.89 0.44
0 1
0 −1




x ≤




9
8.049

9
8.049
10
10




x1

x
2

X
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Fig. 12.4 Example 12.3: Pre(X ,W)∩X for system (12.27) under constraints (12.28).

Robust Invariant and Robust Control Invariant Sets

Two different types of sets are considered in this chapter: robust invariant
sets and robust control invariant sets. We will first discuss robust invariant
sets. Invariant sets are computed for autonomous systems. These types of
sets are useful to answer questions such as: “For a given feedback controller
u = g(x), find the set of states whose trajectory will never violate the system
constraints for all possible disturbances”. The following definitions introduce
the different types of robust invariant sets.
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Definition 12.1 (Robust Positive Invariant Set). A set O ⊆ X is said
to be a robust positive invariant set for the autonomous system (12.1) subject
to the constraints in (12.3), if

x(0) ∈ O ⇒ x(t) ∈ O, ∀w(t) ∈ W , t ∈ N+

Definition 12.2 (Maximal Robust Positive Invariant Set O∞). The
set O∞ ⊆ X is the maximal robust invariant set of the autonomous system
(12.1) subject to the constraints in (12.3) if O∞ is a robust invariant set and
O∞ contains all the robust positive invariant sets contained in X that contain
the origin.

Theorem 12.1 (Geometric condition for invariance). A set O ⊆ X is
a robust positive invariant set for the autonomous system (12.1) subject to
the constraints in (12.3), if and only if

O ⊆ Pre(O,W) (12.34)

The proof of Theorem 12.1 follows the same lines of the proof of Theorem 10.1.
2

It is immediate to prove that condition (12.34) of Theorem 12.1 is equiv-
alent to the following condition

Pre(O,W) ∩ O = O (12.35)

Based on condition (12.35), the following algorithm provides a procedure
for computing the maximal robust positive invariant subset O∞ for sys-
tem (12.1)-(12.3) (for reference to proofs and literature see Chapter 10.3).

Algorithm 12.1 (Computation of O∞)

INPUT fa, X , W
OUTPUT O∞

1. LET Ω0 = X
2. LET Ωk+1 = Pre(Ωk,W) ∩Ωk

3. IF Ωk+1 = Ωk THEN

O∞ ← Ωk+1

ELSE GOTO 2
4. END

Algorithm 12.1 generates the set sequence {Ωk} satisfying Ωk+1 ⊆ Ωk, ∀k ∈ N
and it terminates if Ωk+1 = Ωk so that Ωk is the maximal robust positive
invariant set O∞ for system (12.1)-(12.3).

Example 12.4. Consider the second order stable system in Example 12.1

x(t + 1) = Ax(t) + w(t) =

[
0.5 0
1 −0.5

]
x(t) + w(t) (12.36)

subject to the state constraints
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x(t) ∈ X =

{
x :

[
−10
−10

]
≤ x ≤

[
10
10

]}
, ∀t ≥ 0

w(t) ∈ W =

{
w :

[
−1
−1

]
≤ w ≤

[
1
1

]}
, ∀t ≥ 0

(12.37)

The maximal robust positive invariant set of system (12.36) subject to con-
straints (12.37) is depicted in Fig. 12.5 and reported below:




0.89 −0.44
−0.89 0.44
−1 0
0 −1
1 0
0 1




x ≤




8.04
8.04
10
10
10
10



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x
2

X
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Fig. 12.5 Maximal Robust Positive Invariant Set of system (12.36) subject to con-
straints (12.37).

Robust control invariant sets are defined for systems subject to controllable
inputs. These types of sets are useful to answer questions such as: “Find
the set of states for which there exists a controller such that the system
constraints are never violated for all possible disturbances”. The following
definitions introduce the different types of robust control invariant sets.

Definition 12.3 (Robust Control Invariant Set). A set C ⊆ X is said
to be a robust control invariant set for the system in (12.2) subject to the
constraints in (12.3), if

x(t) ∈ C ⇒ ∃u(t) ∈ U such that f(x(t), u(t), w(t)) ∈ C, ∀ w(t) ∈ W , ∀ t ∈ N+

Definition 12.4 (Maximal Robust Control Invariant Set C∞). The
set C∞ ⊆ X is said to be the maximal robust control invariant set for the
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system in (12.2) subject to the constraints in (12.3), if it is robust control
invariant and contains all robust control invariant sets contained in X .

Remark 12.3. The geometric conditions for invariance (12.34)-(12.35) hold
for control invariant sets.

The following algorithm provides a procedure for computing the maximal
control robust invariant set C∞ for system (12.2)-(12.3).

Algorithm 12.2 (Computation of C∞)

INPUT A and B, X , U and W
OUTPUT C∞
1. LET Ω0 = X
2. LET Ωk+1 = Pre(Ωk,W) ∩Ωk

3. IF Ωk+1 = Ωk THEN

C∞ ← Ωk+1

ELSE GOTO 2
4. END

Algorithm 12.2 generates the set sequence {Ωk} satisfying Ωk+1 ⊆ Ωk, ∀k ∈ N
and O∞ =

⋂
k≥0 Ωk. If Ωk = ∅ for some integer k then the simple conclusion

is that O∞ = ∅. Algorithm 12.2 terminates if Ωk+1 = Ωk so that Ωk is the
maximal robust control invariant set C∞ for the system (12.2)-(12.3). The
same holds true for non-autonomous systems.

Example 12.5. Consider the second order unstable system in example 12.2.
The maximal robust control invariant set of system (12.16) subject to con-
straints (12.17) is depicted in Fig. 12.6 and reported below:




0 1
0 −1

0.55 −0.83
−0.55 0.83


 x ≤




3.72
3.72
2.0
2.0




Definition 12.5 (Finitely determined set). Consider Algorithm 12.1.
The set C∞ (O∞) is finitely determined if and only if ∃ i ∈ N such that
Ωi+1 = Ωi. The smallest element i ∈ N such that Ωi+1 = Ωi is called the
determinedness index.

For all states contained in the maximal robust control invariant set C∞
there exists a control law, such that the system constraints are never violated
for all feasible disturbances. This does not imply that there exists a control
law which can drive the state into a user-specified target set. This issue is
addressed in the following by introducing the concept of robust controllable
and stabilizable sets.

Definition 12.6 (N-Step Robust Controllable Set KN (O,W)). For a
given target set O ⊆ X , the N -step robust controllable set KN (O,W) of the
system (12.2) subject to the constraints (12.3) is defined as:
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Fig. 12.6 Maximal Robust Control Invariant Set of system (12.16) subject to con-
straints (12.17).

Kj(O,W) , Pre(Kj−1(O),W), K0(O,W) = O, j ∈ {1, . . . , N}.

From Definition 12.6, all states x0 belonging to the N -Step Robust Control-
lable Set KN (O,W) can be robustly driven, through a time-varying control
law, to the target set O in N steps, while satisfying input and state con-
straints for all possible disturbances.

Definition 12.7 (Maximal Robust Controllable Set K∞(O,W)). For
a given target set O ⊆ X , the maximal robust controllable set K∞(O,W)
for the system (12.2) subject to the constraints in (12.3) is the union of all
N -step robust controllable sets contained in X (N ∈ N).

Robust controllable sets KN (O,W) where the target O is a robust control
invariant set are special sets, since in addition to guaranteeing that from
KN (O,W) we robustly reach O in N steps, one can ensure that once reached
O, the system can stay there at all future time instants and for all possible
disturbance realizations.

Definition 12.8 (N-step (Maximal) Robust Stabilizable Set). For a
given robust control invariant set O ⊆ X , the N -step (maximal) robust stabi-
lizable set of the system (12.2) subject to the constraints (12.3) is the N -step
(maximal) robust controllable set KN (O,W) (K∞(O,W)).

The set K∞(O,W) contains all states which can be robustly steered into
the robust control invariant set O and hence K∞(O,W) ⊆ C∞. For linear
systems the set K∞(O,W) ⊆ C∞ can be computed as follows:

Algorithm 12.3 (The Maximal Robust Stabilizable Set K∞(O,W))

1. K0 = O, where O is a control invariant set
2. Kc+1 = Pre(Kc,W) ∩ Kc

3. If Kc+1 = Kc, then K∞(O,W) = Kc, return; Else, set c = c + 1 and
goto 2.
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Since O is robust control invariant, it holds ∀c ∈ N that Kc is robust control
invariant and Kc ⊆ Kc+1. Note that Algorithm 12.3 is not guaranteed to
terminate in finite time.

N -step robust reachable sets are defined analogously to N -step robust
controllable set.

Definition 12.9 (N-Step Robust Reachable Set RN (X0)). For a given
initial set X0 ⊆ X , the N -step robust reachable set RN (X0,W) of the system
(12.1) or (12.2) subject to the constraints (12.3) is defined as:

Ri+1(X0,W) , Reach(Ri(X0),W), R0(X0,W) = X0, i = 0, . . . , N − 1.

From Definition 12.9, all states x0 belonging to X0 will evolve to the N -step
robust reachable set RN (X0,W) in N steps.

12.3 Problem Formulation

Consider the following discrete-time linear uncertain system

x(t + 1) = A(wp(t))x(t) + B(wp(t))u(t) + Ewa(t) (12.38)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and input vectors, respectively,
subject to the constraints

x(t) ∈ X , u(t) ∈ U , ∀t ≥ 0. (12.39)

The sets X ⊆ Rn and U ⊆ Rm are polytopes. Vectors wa(t) ∈ Rna and
wp(t) ∈ Rnp are unknown additive disturbances and parametric uncertain-
ties, respectively. The disturbance vector is w(t) = [wa(t); wp(t)] ∈ Rnw

with nw = na + np. We assume that only bounds on wa(t) and wp(t)
are known, namely that w ∈ W . In particular W = Wa × Wp with
wa(t) ∈ Wa, where Wa ⊂ Rna is a given polytope represented in terms
if its vertices Wa = conv({wa,1, . . . , wa,nWa}), and wp(t) ∈ Wp, where
Wp = conv({wp,1, . . . , wp,nWp}) is a polytope in Rnp . We also assume that
A(·), B(·) are affine functions of wp

A(wp) = A0 +

np∑

i=1

Aiwp,i
c , B(wp) = B0 +

np∑

i=1

Biwp,i
c (12.40)

where Ai ∈ Rn×n and Bi ∈ Rn×m are given matrices for i = 0 . . . , np and
wp,i

c is the i-th component of the vector wp, i.e., wp = [wp,1
c , . . . , w

p,np
c ].
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Open-Loop Predictions

Define the worst case cost function as

J0(x(0), U0) , maxw0,...,wN−1

[
p(xN ) +

∑N−1
k=0 q(xk, uk)

]

subj. to





xk+1 = A(wp
k)xk + B(wp

k)uk + Ewa
k

wa
k ∈ Wa, wp

k ∈ Wp,
k = 0, . . . , N − 1

(12.41)

where N is the time horizon and U0 , [u′
0, . . . , u

′
N−1]

′ ∈ Rs, s , mN the
vector of the input sequence. If the 1-norm or ∞-norm is used in the cost
function of problem (12.41), then we set

p(xN ) = ‖PxN‖p, q(xk, uk) = ‖Qxk‖p + ‖Ruk‖p (12.42)

with p = 1 or p = ∞. If the squared euclidian norm is used in the cost
function of problem (12.41), then we set

p(xN ) = x′
NPxN , q(xk, uk) = x′

kQxk + u′
kRuk. (12.43)

Note that in (12.41) xk denotes the state vector at time k obtained by starting
from the state x0 = x(0) and applying to the system model

xk+1 = A(wp
k)xk + B(wp

k)uk + Ewa
k

the input sequence u0, . . . , uk−1 and the disturbance sequences wa , {wa
0 , . . . , wa

N−1},
wp , {wp

0 , . . . , wp
N−1}.

Consider the robust optimal control problem

J∗
0 (x0) ,min

U0

J0(x0, U0) (12.44)

subj. to





xk ∈ X , uk ∈ U
xk+1 = A(wp

k)xk + B(wp
k)uk + Ewa

k

xN ∈ Xf

k = 0, . . . , N − 1




∀wa

k ∈ Wa, wp
k ∈ Wp

∀k = 0, . . . , N − 1

(12.45)

where Xf ⊆ Rn is a terminal polyhedral region. We denote by U∗
0 =

{u∗
0, . . . , u

∗
N−1} the optimal solution to (12.44)–(12.45).

We denote with XOL
i ⊆ X the set of states xi for which the robust optimal

control problem (12.41)-(12.45) is feasible, i.e.,

XOL
i = {xi ∈ X : ∃(ui, . . . , uN−1) such that xk ∈ X , uk ∈ U , k = i, . . . , N − 1, xN ∈ Xf

∀ wa
k ∈ Wa, wp

k ∈ Wp k = i, . . . , N − 1, where xk+1 = A(wp
k)xk + B(wp

k)uk + Ewa
k}.

(12.46)
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Remark 12.4. Note that we distinguish between the current state x(k) of
system (12.38) at time k and the variable xk in the optimization prob-
lem (12.45), that is the predicted state of system (12.38) at time k ob-
tained by starting from the state x0 = x(0) and applying to system xk+1 =
A(wp

k)xk + B(wp
k)uk + Ewa

k the input sequence u0, . . . , uk−1 and the distur-
bance sequences wp

0 , . . . , wp
k−1, wa

0 , . . . , wa
k−1. Analogously, u(k) is the input

applied to system (12.38) at time k while uk is the k-th optimization variable
of the optimization problem (12.45).

Problem (12.41) looks for the worst value J(x0, U) of the performance in-
dex and the corresponding worst sequences wp∗, wa∗ as a function of x0 and
U0. Problem (12.44)–(12.45) minimizes such a worst performance subject to
the constraint that the input sequence must be feasible for all possible distur-
bance realizations. In other words, the worst-case performance is minimized
under constraint fulfillment against all possible realizations of wa, wp. Note
that worst sequences wa∗, wp∗for the performance are not necessarily worst
sequences in terms of constraints satisfaction.

The min-max formulation (12.41)–(12.45) is based on an open-loop pre-
diction and thus referred to as Constrained Robust Optimal Control with
open-loop predictions (CROC-OL). The optimal control problem (12.41)–
(12.45) can be viewed as a deterministic zero-sum dynamic game between
two players: the controller U and the disturbance W [22, pag. 266-272]. The
player U plays first. Given the initial state x(0), U chooses his action over
the whole horizon {u0, . . . , uN−1}, reveals his plan to the opponent W , who
decides on his actions next {wa

0 , wp
0 , . . . , wa

N−1, w
p
N−1}.

For this reason the player U has the duty of counteracting any feasible
disturbance realization with just one single sequence {u0, . . . , uN−1}. This
prediction model does not consider that at the next time step, the payer
can measure the state x(1) and “adjust” his input u(1) based on the current
measured state. By not considering this fact, the effect of the uncertainty
may grow over the prediction horizon and may easily lead to infeasibility of
the min problem (12.41)–(12.45).

On the contrary, in the closed-loop prediction scheme presented next, the
optimization scheme predicts that the disturbance and the controller play
one move at a time.

Closed-Loop Predictions

The constrained robust optimal control problem based on closed-loop predic-
tions (CROC-CL) is defined as follows:
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J∗
j (xj) , min

uj

Jj(xj , uj) (12.47)

subj. to

{
xj ∈ X , uj ∈ U
A(wp

j )xj + B(wp
j )uj + Ewa

j ∈ Xj+1

}
∀wa

j ∈ Wa, wp
j ∈ Wp

(12.48)

Jj(xj , uj) , max
wa

j ∈Wa, wp
j ∈Wp

{
q(xj , uj) + J∗

j+1(A(wp
j )xj + B(wp

j )uj + Ewa
j )
}
,

(12.49)

for j = 0, . . . , N − 1 and with boundary conditions

J∗
N (xN ) = p(xN ) (12.50)

XN = Xf , (12.51)

where Xj denotes the set of states x for which (12.47)–(12.49) is feasible

Xj = {x ∈ X : ∃u ∈ U s.t. A(wp)x + B(wp)u + Ewa ∈ Xj+1 ∀wa ∈ Wa, wp ∈ Wp}.
(12.52)

The reason for including constraints (12.48) in the minimization problem
and not in the maximization problem is that in (12.49) wa

j and wp
j are free to

act regardless of the state constraints. On the other hand, the input uj has
the duty of keeping the state within the constraints (12.48) for all possible
disturbance realization.

Again, the optimal control problem (12.47)–(12.49) can be viewed as a
deterministic zero-sum dynamic game between two players: the controller
U and the disturbance W . The game is played as follows. At the generic
time j player U observes xj and responds with uj(xj). Player W observes
(xj , uj(xj)) and responds with wa

j and wp
j .

Note that player U does not need to reveal his action uj to player W (the
disturbance). This happens for instance in games where U and W play at
the same time, e.g. rock-paper-scissors.

The player W will always play the worst case action only if it has knowledge
of both xj and uj(xj). In fact, wa

j and wp
j in (12.49) are a function of xj and

uj . If U does not reveal his action to player W , then we can only claim
that the player W might play the worst case action. Problem (12.47)–(12.49)
is meaningful in both cases. Robust constraint satisfaction and worst case
minimization will always be guaranteed.

Example 12.6. Consider the system

xk+1 = xk + uk + wk (12.53)

where x, u and w are state, input and disturbance, respectively. Let uk ∈
{−1, 0, 1} and wk ∈ {−1, 0, 1} be feasible input and disturbance. Here
{−1, 0, 1} denotes the set with three elements: -1, 0 and 1. Let x(0) = 0
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be the initial state. The objective for player U is to play two moves in order
to keep the state x2 at time 2 in the set [−1, 1]. If U is able to do so for any
possible disturbance, then he will win the game.

The open-loop formulation (12.44)–(12.45) is infeasible. In fact, in open-
loop U can choose from nine possible sequences: (0,0), (1,1), (-1,-1), (-1,1)
(1,-1), (-1,0), (1,0), (0,1) and (0,-1). For any of those sequence there will
always exist a disturbance sequence w0, w1 which will bring x2 outside the
feasible set [-1,1].

The closed-loop formulation (12.47)–(12.49) is feasible and has a simple
solution: uk = −xk. In this case system (12.53) becomes xk+1 = wk and
x2 = w1 lies in the feasible set [−1, 1] for all admissible disturbances w1.

Explicit Solutions

In the following sections we will describe how to compute the solution to
CROC-OL and CROC-CL problems. In particular we will show that the solu-
tion to CROC-OL and CROC-CL problem with worst-case perforce based on
1- or∞-norm can be expressed in feedback form where u∗(k) is a continuous
piecewise affine function on polyhedra of the state x(k), i.e., u∗(k) = fk(x(k))
where

fk(x) = F i
kx + gi

k if Hi
kx ≤ Ki

k, i = 1, . . . , N r
k . (12.54)

Hi
k and Ki

k in equation (12.54) are the matrices describing the i-th polyhedron
CRi

k = {x ∈ Rn : Hi
kx ≤ Ki

k} inside which the feedback optimal control
law u∗(k) at time k has the affine form F i

kx + gi
k.

If CROC-OL problems are considered, the set of polyhedra CRi
k, i =

1, . . . , N r
k is a polyhedral partition of the set of feasible states XOL

k of prob-
lem (12.41)–(12.45) at time k.

If CROC-CL problems are considered, the set of polyhedra CRi
k, i =

1, . . . , N r
k is a polyhedral partition of the set of feasible states Xk of prob-

lem (12.47)–(12.49) at time k.
The difference between the feasible sets XOL

k and Xk associated with open-
loop prediction and closed-loop prediction, respectively, are discussed in the
next section.

12.4 Feasible Solutions

As in the nominal case (Section 10.3), there are two ways to rigourously define
and compute the robust feasible sets: the batch approach and the recursive
approach. While for systems without disturbances, both approaches yield
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the same result, in the robust case the batch approach provides the feasible
set XOL

i of CROC with open-loop predictions and the recursive approach
provides the feasible set Xi of CROC with closed-loop predictions. From the
discussion in the previous sections, clearly we have XOL

i ⊆ Xi. We will detail
the batch approach and the recursive approach next and at the end of the
section will show how to modify the batch approach in order to compute Xi.

Batch Approach: Open-Loop Prediction

Consider the set XOL
i (12.46) of feasible states xi at time i for which (12.44)–

(12.45) is feasible, for i = 0, . . . , N . Consider the definition of XOL
i in (12.46)

rewritten below

XOL
i = {xi ∈ X : ∃(ui, . . . , uN−1) such that xk ∈ X , uk ∈ U , k = i, . . . , N − 1, xN ∈ Xf

∀ wa
k ∈ Wa, wp

k ∈ Wp k = i, . . . , N − 1, where xk+1 = A(wp
k)xk + B(wp

k)uk + Ewa
k}

For any initial state xi ∈ XOL
i there exists a feasible sequence of inputs

Ui , [u′
i, . . . , u

′
N−1] which keeps the state evolution in the feasible set X at

future time instants k = i + 1, . . . , N − 1 and forces xN into Xf at time N
for all feasible disturbance sequence wa

k ∈ Wa, wp
k ∈ Wp, k = i, . . . , N − 1.

Clearly XOL
N = Xf .

Next we show how to compute XOL
i for i = 0, . . . , N − 1. Let the state

and input constraint sets X , Xf and U be the H-polyhedra Axx ≤ bx, Afx ≤
bf , Auu ≤ bu, respectively. Recall that the disturbance sets are defined as
Wa = conv{wa,1, . . . , wa,nWa } and Wp = conv{wp,1, . . . , wp,nWp}. Define
Ui , [u′

i, . . . , u
′
N−1] and the polyhedron Pi of robustly feasible states and

input sequences at time i, defined as

Pi = {(Ui, xi) ∈ Rm(N−i)+n : GiUi − Eixi ≤Wi}. (12.55)

In (12.55) Gi, Ei and Wi are obtained by collecting all the following inequal-
ities:

• Input Constraints

Auuk ≤ bu, k = i, . . . , N − 1

• State Constraints

Axxk ≤ bx, k = i, . . . , N −1 for all wa
l ∈ Wa, wp

l ∈ Wp, l = i, . . . , k−1.
(12.56)

• Terminal State Constraints

AfxN ≤ bf , for all wa
l ∈ Wa, wp

l ∈ Wp, l = i, . . . , N − 1. (12.57)
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Constraints (12.56)-(12.57) are enforced for all feasible disturbance se-
quences. In order to do so, we rewrite constraints (12.56)-(12.57) as a func-
tion of xi and the input sequence Ui. Since we assumed that that A(·), B(·)
are affine functions of wp (cf. equation (12.40)) and since the composition of
a convex constraint with an affine map generates a convex constraint (Sec-
tion 1.2), we can use Proposition 12.25 to rewrite constraints (12.56) as

Ax

(
(Πk−1

j=i A(wp
j ))xi +

∑k−1
l=i (Π l−1

j=i A(wp
j )(B(wp

k−1−l)uk−1−l + Ewa
k−1−l))

)
≤ bx,

for all wa
j ∈ {wa,i}nWa

i=1 , wp
j ∈ {wp,i}nWp

i=1 , ∀ j = i, . . . , k − 1,

k = i, . . . , N − 1.
(12.58)

and imposing the constraints at all the vertices of the setsWa ×Wa × . . .×Wa

︸ ︷︷ ︸
i,...,N−1

and Wp ×Wp × . . .×Wp

︸ ︷︷ ︸
i,...,N−1

. Note that the constraints (12.58) are now linear

in xi and Ui. The same procedure can be repeated for constraint (12.57).
Once the matrices Gi, Ei and Wi have been computed, the set XOL

i is a
polyhedron and can be computed by projecting the polyhedron Pi in (12.55)
on the xi space.

Recursive Approach: Closed-Loop Prediction

In the recursive approach we have

Xi = {x ∈ X : ∃u ∈ U such that A(wp
i )x + B(wp

i )u + Ewa
i ∈ Xi+1 ∀wa

i ∈ Wa, wp
i ∈ Wp},

i = 0, . . . , N − 1

XN = Xf . (12.59)

The definition of Xi in (12.59) is recursive and it requires that for any feasible
initial state xi ∈ Xi there exists a feasible input ui which keeps the next state
A(wp

i )x+ B(wp
i )u +Ewa

i in the feasible set Xi+1 for all feasible disturbances
wa

i ∈ Wa, wp
i ∈ Wp.

Initializing XN to Xf and solving (12.59) backward in time yields the feasi-
ble set X0 for the CROC-CL (12.47)–(12.49) which, as shown in example 12.6,
is different from XOL

0 .
Let Xi be the H-polyhedron AXix ≤ bXi. Then the set Xi−1 is the projec-

tion of the following polyhedron




Au

0
AXiB(wp

i )


ui+




0
Ax

AXiA(wp
i )


xi ≤




bu

bx

bXi − Ewa
i


 for all wa

i ∈ {wa,i}nWa

i=1 , wp
i ∈ {wp,i}nWp

i=1

(12.60)
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on the xi space (note that we have used Proposition 12.25 and imposed state
constraints at all the vertices of the sets Wa ×Wp).

The backward evolution in time of the feasible sets Xi enjoys the properties
described by Theorems 10.2 and 10.3 for the nominal case. In particular if
a robust controlled invariant set is chosen as terminal constraint Xf , then
set Xi grows as i becomes smaller and stops growing when it becomes the
maximal robust stabilizable set.

Proposition 12.3. Let the terminal constraint set Xf be a robust control
invariant subset of X . Then,

1. The feasible set Xi, i = 0, . . . , N − 1 is equal to the (N − i)-step robust
stabilizable set:

Xi = KN−i(Xf ,W)

2. The feasible set Xi, i = 0, . . . , N − 1 is robust control invariant and
contained within the maximal robust control invariant set:

Xi ⊆ C∞

3. Xi ⊇ Xj if i < j, i = 0, . . . , N − 1. The size of the feasible Xi set stops
increasing (with decreasing i) if and only if the maximal robust stabilizable
set is finitely determined and N−i is larger than its determinedness index
N̄ , i.e.

Xi ⊃ Xj if N − N̄ < i < j < N

Furthermore,
Xi = K∞(Xf ,W) if i ≤ N − N̄

Batch Approach: Closed-Loop Prediction

The batch approach can be modified in order to obtain Xi instead of XOL
i .

The main idea is to augment the number of inputs by allowing one input
sequence for each vertex i of the disturbance sets Wa ×Wa × . . .×Wa

︸ ︷︷ ︸
1,...,N−1

and

Wp ×Wp × . . .×Wp

︸ ︷︷ ︸
1,...,N−1

. The generic k-th input sequence can be written as

Uk = [u0, ũ
j1
1 , ũj2

2 , . . . ũ
jN−1

N−1 ]

where j1 ∈ {1, . . . , nWanWp}, j2 ∈ {1, . . . , (nWanWp)2},. . ., ji ∈ {1, . . . , (nWanWp)N−1}.
This yields (nWanWp)(nWanWp)2 · (nWanWp)N−1 free control moves.

Since the approach is computationally demanding, we prefer to present
the main idea through a very simple example rather than including all the
tedious details.
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Example 12.7. Consider the system

xk+1 = xk + uk + wk (12.61)

where x, u and w are state, input and disturbance, respectively. Let uk ∈
[−1, 1] and wk ∈ [−1, 1] be the feasible input and disturbance. The objective
for player U is to play two moves in order to keep the state at time three x3

in the set Xf = [−1, 1].

Batch approach
We rewrite the terminal constraint as

x3 = x0 + u0 + u1 + u2 + w0 + w1 + w2 ∈ [−1, 1]
for all w0 ∈ [−1, 1], w1 ∈ [−1, 1], w2 ∈ [−1, 1]

(12.62)

which by Proposition 12.25 becomes

−1 ≤ x0 + u0 + u1 + u2 + 3 ≤ 1
−1 ≤ x0 + u0 + u1 + u2 + 1 ≤ 1
−1 ≤ x0 + u0 + u1 + u2 − 1 ≤ 1
−1 ≤ x0 + u0 + u1 + u2 − 3 ≤ 1

(12.63)

which by removing redundant constraints becomes the (infeasible) con-
straint

2 ≤ x0 + u0 + u1 + u2 ≤ −2

The set XOL
0 is the projection on the x0 space of the polyhedron P0

P0 = {(u0, u1, u2, x0) ∈ R4 :




1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1
1 1 1
−1 −1 −1







u0

u1

u2


+




0
0
0
0
0
0
1
−1




x0 ≤




1
1
1
1
1
1
−2
−2




}

(12.64)
which is empty since the terminal state constraint is infeasible.

Recursive approach
By using the recursive approach we obtain X3 = Xf = [−1, 1]. We rewrite
the terminal constraint as

x3 = x2 + u2 + w2 ∈ [−1, 1] for all w2 ∈ [−1, 1] (12.65)

which by Proposition 12.25 becomes
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−1 ≤ x2 + u2 + 1 ≤ 1
−1 ≤ x2 + u2 − 1 ≤ 1

(12.66)

which by removing redundant constraints becomes

0 ≤ x2 + u2 ≤ 0

The set X2 is the projection on the x2 space of the polyhedron




1 0
−1 0
1 1
−1 −1


 [u2, x2] ≤




1
1
0
0


 (12.67)

which yields X2 = [−1, 1]. Since X2 = X3 one can conclude that X2 is the
maximal controllable robust invariant set and X0 = X1 = X2 = [−1, 1].

Batch approach with closed-loop predictions
The horizon is three and therefore we consider the disturbance set over
the horizon 3-1=2,W×W = [−1, 1]× [−1, 1]. Sich a set has four vertices:
{w̃1

0 = 1, w̃1
1 = 1}, {w̃2

0 = −1, w̃2
1 = 1}, {w̃1

0 = 1, w̃3
1 = −1}, {w̃2

0 =
−1, w̃4

1 = −1}. We introduce an input sequence u0, ũi
1, ũj

2, where the
index i ∈ {1, 2} is associated with the vertices w̃1

0 and w̃2
0 and the index

j ∈ {1, 2, 3, 4} is associated with the vertices w̃1
1, w̃2

1 , w̃3
1 , w̃4

1 . The terminal
constraint is thus rewritten as

x3 = x0+u0+ũi
1+ũj

2+w̃i
0+w̃j

1+w2 ∈ [−1, 1], i = 1, 2, j = 1, . . . , 4, ∀ w2 ∈ [−1, 1]
(12.68)

which becomes

−1 ≤ x0 + u0 + ũ1
1 + ũ1

2 + 0 + w2 ≤ 1, ∀ w2 ∈ [−1, 1]
−1 ≤ x0 + u0 + ũ2

1 + ũ2
2 + 0 + w2 ≤ 1, ∀ w2 ∈ [−1, 1]

−1 ≤ x0 + u0 + ũ1
1 + ũ3

2 + 2 + w2 ≤ 1, ∀ w2 ∈ [−1, 1]
−1 ≤ x0 + u0 + ũ2

1 + ũ4
2 − 2 + w2 ≤ 1, ∀ w2 ∈ [−1, 1]

−1 ≤ u0 ≤ 1
−1 ≤ ũ1

1 ≤ 1
−1 ≤ ũ2

1 ≤ 1
−1 ≤ ũ1

2 ≤ 1
−1 ≤ ũ2

2 ≤ 1
−1 ≤ ũ3

2 ≤ 1
−1 ≤ ũ4

2 ≤ 1

(12.69)

The set X0 can be obtained by using Proposition 12.25 for the polyhe-
dron (12.69) and projecting the resulting polyhedron in the (x0, u0, ũ1

1, ũ
2
1, ũ1

2, ũ2
2, ũ3

2, ũ4
2)-

space on the x0 space. This yields X0 = [−1, 1].
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12.5 State Feedback Solution, 1-Norm and ∞-Norm

Case

In this chapter we show how to find a state feedback solution to CROC prob-
lems, namely an explicit function u∗

k(xk) mapping the state xk to its cor-
responding optimal input u∗

k, ∀k = 0, . . . , N − 1. The reader is assumed to
be familiar with the concept of multiparametric programming presented in
Chapter 6.

Multiparametric Programming with Piecewise-Linear Cost

Consider the optimization problem

J∗(x) = min
z

J(z, x)

subj. to Gz ≤W + Sx,
(12.70)

where z ∈ Rs are the optimization variables, x ∈ Rn is the vector of pa-
rameters, J(z, x) is the objective function and G ∈ Rm×s, W ∈ Rm, and
S ∈ Rm×n. Problem (12.70) with J(z, x) = c′z is a multiparametric linear
program (mp-LP) (see Chapter 6) .

For a given polyhedral set K ⊆ Rn of parameters, solving (12.70) amounts
to determining the set K∗ ⊆ K of parameters for which (12.70) is feasible,
the value function J∗ : K∗ → R, and the optimizer function1 z∗ : K∗ → Rs.

The properties of J∗(·) and z∗(·) have been analyzed in Chapter 6 and
summarized in Theorem 6.4. Below we give some results based on this theo-
rem.

Lemma 12.4. Let J : Rs × Rn → R be a continuous convex piecewise affine
function of (z, x) of the form

J(z, x) = Liz + Hix + Ki for [ z
x ] ∈ Ri (12.71)

where {Ri}nJ

i=1 are polyhedral sets with disjoint interiors, R ,
⋃nJ

i=1Ri is a
polyhedron and Li, Hi and Ki are matrices of suitable dimensions. Then the
multiparametric optimization problem (12.70) is an mp-LP.

Proof: As J is a convex piecewise affine function, it follows that J(z, x)
can be rewritten as J(z, x) = maxi=1,...,s {Liz+Hix+Ki} (see Section 4.1.5).
Then, it is easy to show that (12.70) is equivalent to the following mp-LP:
minz,ε ε subject to Cz ≤ c + Sx, Liz + Hix + Ki ≤ ε, i = 1, . . . , s. 2

Lemma 12.5. Let f : Rs × Rn × Rnw → R and g : Rs × Rn × Rnw → Rng

be functions of (z, x, w) convex in w for each (z, x). Assume that the variable

1 In case of multiple solutions, we define z∗(x) as one of the optimizers.
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w belongs to the polyhedron W with vertices {w̄i}NW

i=1 . Then the min-max
multiparametric problem

J∗(x) = minz maxw∈W f(z, x, w)
subj. to g(z, x, w) ≤ 0 ∀w ∈ W (12.72)

is equivalent to the multiparametric optimization problem

J∗(x) = minµ,z µ
subj. to µ ≥ f(z, x, w̄i), i = 1, . . . , NW

g(z, x, w̄i) ≤ 0, i = 1, . . . , NW .
(12.73)

Proof: Easily follows from the fact that the maximum of a convex func-
tion over a convex set is attained at an extreme point of the set, cf. also [232].
2

Corollary 12.1. If f is convex and piecewise affine in (z, x), i.e. f(z, x, w) =
maxi=1,...,nf

{Li(w)z + Hi(w)x + Ki(w)} and g is linear in (z, x) for all
w ∈ W, g(z, x, w) = Kg(w) + Lg(w)x + Hg(w)z (with Kg(·), Lg(·), Hg(·),
Li(·), Hi(·), Ki(·), i = 1, . . . , nf , convex functions), then the min-max mul-
tiparametric problem (12.72) is equivalent to the mp-LP problem

J∗(x) = minµ,z µ
subj. to µ ≥ Kj(w̄i) + Lj(w̄i)z + Hj(w̄i)x, i = 1, . . . , NW , j = 1, . . . , nf

Lg(w̄i)x + Hg(w̄i)z ≤ −Kg(w̄i), i = 1, . . . , NW
(12.74)

Remark 12.5. As discussed in Proposition 12.2, in the case g(x, z, w) =
g1(x, z)+g2(w), the second constraint in (12.73) can be replaced by g(z, x) ≤
−ḡ, where ḡ ,

[
ḡ1, . . . , ḡng

]′
is a vector whose i-th component is

ḡi = max
w∈W

gi
2(w), (12.75)

and gi
2(w) denotes the i-th component of g2(w). Similarly, if f(x, z, w) =

f1(x, z) + f2(w), the first constraint in (12.73) can be replaced by f(z, x) ≤
−f̄ , where

f̄i = max
w∈W

f i
2(w). (12.76)

Clearly, this has the advantage of reducing the number of constraints in
the multiparametric program from NWng to ng for the second constraint
in (12.73) and from NWnf to nf for the first constraint in (12.73).

In the following subsections we show how to solve CROC problems in state
feedback form by using multiparametric linear programming.
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12.5.1 Batch Approach: Open-Loop Predictions

Theorem 12.2. Consider the CROC-OL (12.41)–(12.45) with p = 1 or
p = ∞. Assume that the parametric uncertainties are in the B matrix only
(A(wp) ≡ A). Then, there exists a solution u∗(0) = f0(x(0)), f0 : Rn → Rm,
which is continuous and PPWA

f0(x) = F i
0x + gi

0 if x ∈ CRi
0, i = 1, . . . , N r

0 (12.77)

where the polyhedral sets CRi
0 , {Hi

0x ≤ ki
0}, i = 1, . . . , Nr

0 , are a partition
of the feasible set XOL

0 . Moreover f0 can be found by solving an mp-LP.

Proof: Since xk = Akx0 +
∑k−1

k=0 Ai[B(wp
k−1−i)uk−1−i + Ewa

k−1−i] is

a linear function of the disturbances wa , {wa
0 , . . . , wa

N−1}, and wp ,
{wp

0 , . . . , wp
N−1} for a fixed input sequence and x0, the cost function in the

maximization problem (12.41) is convex and piecewise affine with respect to
the optimization vectors wa and wp and the parameters U0, x0. The con-
straints in (12.44) are linear in U0 and x0, for any wa and wp. Therefore,
by Lemma 12.5, problem (12.41)–(12.45) can be solved by solving an mp-LP
through the enumeration of all the vertices of the sets Wa ×Wa × . . .×Wa

and Wp ×Wp × . . . ×Wp. The theorem follows from the mp-LP properties
described Theorem 6.4. 2

Remark 12.6. In case of OL-CROC with additive disturbances only (w(t) =
0) the number of constraints in (12.45) can be reduced as explained in Re-
mark 12.5.

12.5.2 Recursive Approach: Closed-Loop Predictions

Theorem 12.3. There exists a state-feedback control law u∗(k) = fk(x(k)),
fk : Xk ⊆ Rn → U ⊆ Rm, solution of the CROC-CL (12.47)–(12.51) with
cost (12.42) and k = 0, . . . , N − 1 which is time-varying, continuous and
piecewise affine on polyhedra

fk(x) = F i
kx + gi

k if x ∈ CRi
k, i = 1, . . . , Nr

k (12.78)

where the polyhedral sets CRi
k = {x ∈ Rn : Hi

kx ≤ Ki
k}, i = 1, . . . , Nr

k are
a partition of the feasible polyhedron Xk. Moreover fi, i = 0, . . . , N − 1 can
be found by solving N mp-LPs.

Proof: Consider the first step j = N−1 of dynamic programming applied
to the CROC-CL problem (12.47)–(12.49) with cost (12.42)
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J∗
N−1(xN−1) , min

uN−1

JN−1(xN−1, uN−1) (12.79)

subj. to





FxN−1 + GuN−1 ≤ f
A(wp

N−1)xN−1 + B(wp
N−1)uN−1 + Ewa

N−1 ∈ Xf

∀wa
N−1 ∈ Wa, wp

N−1 ∈ Wp

(12.80)

JN−1(xN−1, uN−1) , max
wa

N−1∈Wa, wp
N−1∈Wp




‖QxN−1‖p + ‖RuN−1‖p+
+‖P (A(wp

N−1)xN−1+
+B(wp

N−1)uN−1 + Ewa
N−1)‖p



.

(12.81)

The cost function in the maximization problem (12.81) is piecewise affine and
convex with respect to the optimization vector wa

N−1, w
p
N−1 and the param-

eters uN−1, xN−1. Moreover, the constraints in the minimization problem
(12.80) are linear in (uN−1, xN−1) for all vectors wa

N−1, w
p
N−1. Therefore, by

Corollary 12.1, J∗
N−1(xN−1), u∗

N−1(xN−1) and XN−1 are computable via the
mp-LP:

J∗
N−1(xN−1) , min

µ,uN−1

µ (12.82a)

subj. to µ ≥ ‖QxN−1‖p + ‖RuN−1‖p +

+ ‖P (A(w̄p
h)xN−1 + B(w̄p

h)uN−1 + Ew̄a
i )‖p(12.82b)

FxN−1 + GuN−1 ≤ f (12.82c)

A(w̄p
h)xN−1 + B(w̄p

h)uN−1 + Ew̄a
i ∈ XN (12.82d)

∀i = 1, . . . , nWa , ∀h = 1, . . . , nWp .

where {w̄a
i }nWa

i=1 and {w̄p
h}nWp

h=1 are the vertices of the disturbance sets Wa

andWp, respectively. By Theorem 6.4, J∗
N−1 is a convex and piecewise affine

function of xN−1, the corresponding optimizer u∗
N−1 is piecewise affine and

continuous, and the feasible set XN−1 is a convex polyhedron. Therefore, the
convexity and linearity arguments still hold for j = N − 2, . . . , 0 and the
procedure can be iterated backwards in time j, proving the theorem. The
theorem follows from the mp-LP properties described in Theorem 6.4. 2

Remark 12.7. Let na and nb be the number of inequalities in (12.82b)
and (12.82d), respectively, for any i and h. In case of additive disturbances
only (nWp = 0) the total number of constraints in (12.82b) and (12.82d) for
all i and h can be reduced from (na + nb)nWanWp to na + nb as shown in
Remark 12.5.

Remark 12.8. The closed-loop solution u∗(k) = fk(x(k)) can be also obtained
by using the modified batch approach with closed-loop prediction as dis-
cussed in Section 12.4. The idea there is to augment the number of free
inputs by allowing one free sequence ũi

0, . . . ũ
i
N−1 for each vertex i of the sets



12.5 State Feedback Solution, 1-Norm and ∞-Norm Case 279

Wa ×Wa × . . .×Wa

︸ ︷︷ ︸
0,...,N−1

×Wp ×Wp × . . .×Wp

︸ ︷︷ ︸
0,...,N−1

. The high number of extreme

points of such set and the consequent high number of inputs and constraints
make this approach not computationally attractive.

12.5.3 Solution to CROC-CL and CROC-OL via mp-MILP*

Consider the multiparametric mixed-integer linear program (mp-MILP)

J∗(x) = min
z
{J(z, x) = c′z}

subj. to Gz ≤W + Sx.
(12.83)

where z , [zc, zd], zc ∈ Rnc , zd ∈ {0, 1}nd, s , nc + nd is the optimization
vector, x ∈ Rn is the vector of parameters, and where z is the optimization
vector, x ∈ Rs is the vector of parameters.

For a given polyhedral set K ⊆ Rn of parameters, solving (12.83) amounts
to determining the set K∗ ⊆ K of parameters for which (12.83) is feasible,
the value function J : K∗ → R, and the optimizer function2 z∗ : K∗ → Rs.

The properties of J∗(·) and z∗(·) have been analyzed in Chapter 6 and
summarized in Theorem 6.10. Below we state some properties based on these
theorems.

Lemma 12.6. Let J : Rs×Rn → R be a continuous piecewise affine (possibly
nonconvex) function of (z, x),

J(z, x) = Liz + Hix + Ki for [ z
x ] ∈ Ri, (12.84)

where {Ri}nJ

i=1 are polyhedral sets with disjoint interiors, R ,
⋃nJ

i=1Ri is
a (possibly non-convex) polyhedral set and Li, Hi and Ki are matrices of
suitable dimensions. Then the multiparametric optimization problem

J∗(x) , minz J(z, x)
subj. to Cz ≤ c + Sx.

(12.85)

is an mp-MILP.

Proof: By following the approach of [37] to transform piecewise affine
functions into a set of mixed-integer linear inequalities, introduce the auxil-
iary binary optimization variables δi ∈ {0, 1}, defined as

[δi = 1] ↔
[
[ z
x ] ∈ Ri

]
, (12.86)

where δi, i = 1, . . . , nJ , satisfy the exclusive-or condition
∑nJ

i=1 δi = 1, and
set

2 In case of multiple solutions, we define z∗(x) as one of the optimizers.
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J(z, x) =

nJ∑

i=1

qi (12.87)

qi , [Liz + Hix + Ki]δi (12.88)

where qi are auxiliary continuous optimization vectors. By transforming (12.86)–
(12.88) into mixed-integer linear inequalities [37], it is easy to rewrite (12.85)
as a multiparametric MILP. 2

Theorem 12.4. By solving 2N mp-MILPs, the solution of the CROC-CL (12.47)–
(12.51) problem with additive disturbances only (nWp = 0) can be obtained
in state feedback piecewise affine form (12.78)

Proof: Consider the first step j = N − 1 of the dynamic programming
solution (12.47)–(12.49) to CROC-CL. From the terminal conditions (12.51)
it follows that the cost function in the maximization problem is piecewise
affine with respect to both the optimization vector wa

N−1 and the parameters
uN−1, xN−1. By Lemma 12.6, (12.47)-(12.49) can be computed via mp-MILP,
and, by Theorem 6.10, it turns out that JN−1(uN−1, xN−1) is a piecewise
affine and continuous function. Then, since constraints (12.80) are linear with
respect to wa

N−1 for each uN−1, xN−1, we can apply Lemma 12.5 by solv-
ing LPs of the form (12.26). Then, by Lemma 12.6, J∗

N−1(xN−1) is again
computable via mp-MILP, and by Theorem 6.10 it is a piecewise affine and
continuous function of xN−1. By virtue of Theorem 6.10, XN−1 is a (possible
non-convex) polyhedral set and therefore the above maximization and mini-
mization procedures can be iterated to compute the solution (12.78) to the
CROC-CL problem. 2

Theorem 12.5. By solving two mp-MILPs, the solution u∗(x0) to the CROC-
OL (12.41)–(12.45) with additive disturbances only (w(t) = 0) can be com-
puted in explicit piecewise affine form (12.77).

Proof: The objective function in the maximization problem (12.41) is
convex and piecewise affine with respect to the optimization vector wa =
{wa

0 , . . . , wa
N−1} and the parameters U = {u0, . . . , uN−1}, x0. By Lemma 12.6,

it can be solved via mp-MILP. By Theorem 6.10, the value function J is a
piecewise affine function of U and x0 and the constraints in (12.44) are a linear
function of the disturbance wa for any given U and x0. Then, by Lemma 12.6
and Lemma 12.5 the minimization problem is again solvable via mp-MILP,
and the optimizer U∗ = {u∗

0,. . . ,u
∗
N−1} is a piecewise affine function of x0. 2

Remark 12.9. Theorems 12.4, 12.5 and Theorems 12.2, 12.3 propose two dif-
ferent ways of finding the PPWA solution to constrained robust optimal
control by using dynamic programming. The solution approach of Theo-
rems 12.4, 12.5 is more general than the one of Theorems 12.2, 12.3 as it
does not exploit convexity, so that it may be also used in other contexts, for
instance in CROC-CL of hybrid systems.

TrungDuong
Line

TrungDuong
Line

TrungDuong
Line

TrungDuong
Line
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12.6 Parametrizations of the Control Policies

From the previous sections it is clear that CROC-OL (12.41)–(12.45) is con-
servative. Since are optimizing an open-loop control sequence that has to
cope with all possible future disturbance realizations, without taking future
measurements into account. The CROC-CL (12.47)–(12.51) formulation over-
comes this issue but it can quickly lead to an intractable problem.

This section presents an alternative approach which introduces feedback in
the system and, in some cases, can be more efficient than CROC-CL. The idea
is to parameterize the control sequence in the states vector and optimize over
these parameters. The approach is described next for systems with additive
uncertainties.

Consider the worst case cost function as

J0(x(0), U0) , maxwa
0 ,...,wa

N−1
p(xN ) +

∑N−1
k=0 q(xk, uk)

subj. to





xk+1 = Axk + Buk + Ewa
k

wa
k ∈ Wa,

k = 0, . . . , N − 1

(12.89)

where N is the time horizon and U0 , [u′
0, . . . , u

′
N−1]

′ ∈ Rs, s , mN the
vector of the input sequence. Consider the robust optimal control problem

J∗
0 (x0) , min

U0

J0(x0, U0) (12.90)

subj. to





xk ∈ X , uk ∈ U
xk+1 = Axk + Buk + Ewa

k

xN ∈ Xf

k = 0, . . . , N − 1




∀wa

k ∈ Wa

∀k = 0, . . . , N − 1

(12.91)

Consider the parametrization of the control sequence

uk =

k∑

i=0

Lk,ixi + gi, k ∈ {0, . . . , N − 1} (12.92)

with the compact notation:

U0 = Lx + g,

where x = [x′
0, x

′
1, . . . , x

′
N ]

′
and

L =




L0,0 0 · · · 0
...

. . .
. . .

...
LN−1,0 · · · LN−1,N−1 0


 , g =




g0

...
gN−1


 (12.93)
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where L ∈ RmN×nN and g ∈ RmN are unknown feedback control gain and
offset, respectively. With the parametrization (12.92) the robust control prob-
lem (12.89-(12.91) becomes

JLg
0 (x(0), L, g) , maxwa

0 ,...,wa
N−1

p(xN ) +
∑N−1

k=0 q(xk, uk)

subj. to





xk+1 = Axk + Buk + Ewa
k

wa
k ∈ Wa,

uk =
∑k

i=0 Lk,ixi + gi

k = 0, . . . , N − 1

(12.94)

JLg
0

∗
(x0) ,min

L,g
JLg

0 (x0, L, g) (12.95)

subj. to





xk ∈ X , uk ∈ U
xk+1 = Axk + Buk + Ewa

k

uk =
∑k

i=0 Lk,ixi + gi

xN ∈ Xf

k = 0, . . . , N − 1





.
∀wa

k ∈ Wa

∀k = 0, . . . , N − 1

(12.96)

We denote with XLg
0 ⊆ X the set of states x0 for which the robust optimal

control problem (12.95)-(12.96) is feasible, i.e.,

XLg
0 =

{
x0 ∈ Rn : PLg

0 (x0) 6= ∅
}

PLg
0 (x0) = {L, g : xk ∈ X , uk ∈ U , k = 0, . . . , N − 1, xN ∈ Xf

∀ wa
k ∈ Wa k = 0, . . . , N − 1, where xk+1 = Axk + Buk + Ewa

k , uk =
∑k

i=0 Lk,ixi}
(12.97)

Problem (12.94) looks for the worst value JLg
0 (x0, L, g) of the performance

index and the corresponding worst sequences wp∗ as a function of x0 and the
controller gain L and offset g.

Problem (12.95)–(12.96) minimizes (over L and g) the worst performance
subject to the constraint that the input sequence U0 = Lx+g must be feasible
for all possible disturbance realizations. Notice that formulation (12.94)–

(12.96) is based on an closed-loop prediction. Unfortunately the set PLg
0 (x0)

is non–convex, in general [177]. Therefore, finding L and g for a given x0 may
be difficult.

Consider now the parametrization of the control sequence in past distur-
bances

uk =

k−1∑

i=0

Mk,iwi + vi, k ∈ N[0,N−1], (12.98)

which can be compactly written as:
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u = Mw + v

where

M =




0 · · · · · · 0
M1,0 0 · · · 0

...
. . .

. . .
...

MN−1,0 · · · MN−1,N−2 0


 , v =




v0

...

...
vN−1




. (12.99)

Notice that since

wk = xk+1 −Axk −Buk, k ∈ {0, . . . , N − 1}.

the parametrization (12.98) can also be interpreted as a parametrization in
the state space. The advantages of using (12.98) are explained next.

With the parametrization (12.98) the robust control problem (12.89-
(12.91) becomes

JMv
0 (x(0), M, v) , maxwa

0 ,...,wa
N−1

p(xN ) +
∑N−1

k=0 q(xk, uk)

subj. to





xk+1 = Axk + Buk + Ewa
k

wa
k ∈ Wa,

uk =
∑k−1

i=0 Mk,iwi + vi

k = 0, . . . , N − 1

(12.100)

JMv
0

∗
(x0) ,min

M,v
JMv

0 (x0, M, v) (12.101)

subj. to





xk ∈ X , uk ∈ U
xk+1 = Axk + Buk + Ewa

k

uk =
∑k−1

i=0 Mk,iwi + vi

xN ∈ Xf

k = 0, . . . , N − 1





∀wa
k ∈ Wa

∀k = 0, . . . , N − 1

(12.102)

We denote with XMv
0 ⊆ X the set of states x0 for which the robust optimal

control problem (12.101)-(12.102) is feasible, i.e.,

XMv
0 =

{
x0 ∈ Rn : PMv

0 (x0) 6= ∅
}

PMv
0 (x0) = {M, v : xk ∈ X , uk ∈ U , k = 0, . . . , N − 1, xN ∈ Xf

∀ wa
k ∈ Wa k = 0, . . . , N − 1, where xk+1 = Axk + Buk + Ewa

k , uk =
∑k−1

i=0 Mk,iwi + vi}
(12.103)

The following result has been proven in [177].

Theorem 12.6. Consider the control parameterizations (12.92), (12.98) and

the corresponding feasible sets XLg
0 in (12.97) and XMv

0 in (12.103). Then,
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XLg
0 = XMv

0

and PMv
N (x0) is convex in M and v.

Note that in general XMv
0 and JMv

0
∗
(x0) are different from the corre-

sponding CROC-CL solutions X0 and J∗
0 (x0). In particular XMv

0 ⊆ X0 and
JMv

0
∗
(x0) ≥ J∗

0 (x0).
The idea of the parametrization (12.98) appears in the work of Gartska &

Wets in 1974 in the context of stochastic optimization [110]. Recently, it re-
appeared in robust optimization work by Guslitzer and Ben-Tal [127, 42], and
in the context of robust MPC in the wok of van Hessem & Bosgra, Löfberg
and Goulart & Kerrigan [255, 177, 121].

12.7 Example

Example 12.8. Consider the problem of robustly regulating to the origin the
system

x(t + 1) =

[
1 1
0 1

]
x(t) +

[
0
1

]
u(t) + wa(t)

subject to the input constraints

U = {u ∈ R : − 3 ≤ u ≤ 3}

and the state constraints

X = {x ∈ R2 : − 10 ≤ x ≤ 10 k = 0, . . . , 3}

The two-dimensional disturbance wa is restricted to the set Wa = {v :
‖wa‖∞ ≤ 1.5}.

Next we compute the state feedback control law (12.104) obtained by
solving the CROC-CL (12.47)–(12.51) and the CROC-OL (12.41)–(12.45).
We use the cost function

‖PxN‖∞ +

N−1∑

k=0

(‖Qxk‖∞ + |Ruk|)

with N = 5, P = Q = [ 1 1
0 1 ], R = 1.8 and we set Xf = X .

CROC-OL. The min-max problem is formulated as in (12.41)–(12.45). The
resulting polyhedral partition consists of 22 regions and it is depicted in
Figure 12.7(a). We remark that the CROC-OL problem (12.41)–(12.45) is
infeasible for horizon N greater than five.

CROC-CL. The min-max problem is formulated as in (12.47)–(12.49) and
solved using the approach of Theorem 12.3. The resulting polyhedral partition
consists of 64 regions and is depicted in Figure 12.7(b).
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(b) CROC-CL

Fig. 12.7 Polyhedral partition of the state-space corresponding to the explicit solu-
tion of CROC-OL and CROC-CL

12.8 Robust Receding Horizon Control

A robust receding horizon controller for system (12.38)-(12.40) which enforces
the constraints (12.39) at each time t in spite of additive and parametric
uncertainties can be obtained immediately by setting

u(t) = f∗
0 (x(t)), (12.104)

where f∗
0 (x0) : Rn → Rm is the solution to the CROC-OL or CROC-CL

problems discussed in the previous sections. In this way we obtain a state
feedback strategy defined at all time steps t = 0, 1, . . ., from the associated
finite time CROC problems.

If f0 is computed by solving CROC-CL (12.47)–(12.51) (CROC-OL (12.41)–
(12.45)), then the RHC law (12.104) is called a robust receding horizon con-
troller with (open-loop) closed-loop predictions. The closed-loop system ob-
tained by controlling (12.38)-(12.40) with the RHC (12.104) is

x(k + 1) = A(wp)x(k) + B(wp)f0(x(k)) + Ewa , fcl(x(k), wp, wa), k ≥ 0
(12.105)

If p = 1 or p = ∞ in the CROC-CL (12.47)–(12.51) (CROC-OL (12.41)–
(12.45)), then from Theorem 12.3 (Theorem 12.2) we can immediately con-
clude that the robust RHC law (12.104) is piecewise affine and thus its on-line
computation consists of a simple function evaluation.

Convergence and persistent feasibility of the robust receding horizon con-
troller are not guaranteed as discussed in Chapter 11 for nominal receding
horizon controllers. In the robust RHC case is it desirable to obtain robust
convergence to a set O ⊆ Xf (rather than the convergence to an equilibrium

TrungDuong
Sticky Note
%Ve  robust solution %trong state space

Pn=sol{5}{1}.Pn
Fi=sol{5}{1}.Fi
Gi=sol{5}{1}.Gi;
x0=[-7;5];
xk=[x0];
for i=1:20
 [u, feasible, region]=mpt_getOptimizer(Pn, Fi, Gi, x0, Options);
 xk=[xk A*xk(:,end) + B*(u(1)) + E*(-1.5+3*rand(2,1))];
 x0=xk(:,end);
end
figure(2)
y=C*xk;
plot(y(1,:),y(2,:),'-s','LineWidth',2,'MarkerFaceColor','k','MarkerSize',10)
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point) for all X0. In other words, the goal is to design a RHC control law
which drives any feasible state in X0 into the set O for all admissible distur-
bances and keeps the states inside the set O for all future time and for all
admissible disturbances. Clearly this is possible only if O is a robust control
invariant set for system (12.38)-(12.40).

We define a distance of a point x ∈ Rn from a nonempty set Y ⊂ Rn as:

d(x,Y) , inf
y∈Y

d(x, y) (12.106)

The following theorem presents sufficient conditions for convergence and
persistent feasibility in the robust case. It can be proven by using the argu-
ments of Theorem 11.2.

Theorem 12.7. Consider system (12.38)-(12.40), the closed-loop RHC law (12.104)
where f0(x) is obtained by solving the CROC-CL (12.47)–(12.51) for x(0) = x
and the closed-loop system (12.105). Assume that

(A1) The sets X , Xf , U , Wa, Wp are compact.
(A2) Xf and O are robust control invariants, O ⊆ Xf ⊆ X .
(A3) Jp(x) ≤ 0 ∀x ∈ Xf where

Jp(x) = minu Jc(x, u)

subj. to

{
u ∈ U
A(wp)x + B(wp)u + Ewa ∈ Xf ∀ wa ∈ Wa wp ∈ Wp

(12.107)
and

Jc(x, u) = maxwa,wp p(x+)− p(x) + q(x, u)

subj. to

{
wa ∈ Wa, wp ∈ Wp

x+ = A(wp)x + B(wp)u + Ewa

(12.108)

(A4) There exist constants c1, c2 > 0 such that

c1d(x,O) ≤ p(x) ≤ c2d(x,O) ∀x ∈ X0 (12.109)

(A5) There exist constants c3, c4 > 0 such that

c3d(x,O) ≤ q(x, u) ≤ c4d(x,O) ∀ (x, u) ∈ X′ × U (12.110)

Then, for all x ∈ X0, limk→∞ d(x(k),O) = 0. X0 is called the region of
attraction.

Remark 12.10. Theorem 12.7 holds also for the CROC-OL (12.41)–(12.45).
The region of attraction will be XOL

0 .
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Remark 12.11. Assumptions A4 and A5 in Theorem 12.7 imply that stage
cost q(x, u) and terminal cost p(x) in (12.41) need to be zero in O. Note that
this cannot be obtained with p = 2 in (12.41).

Remark 12.12. Robust control invariance of the set Xf in Assumption (A2)
of Theorem 12.7 implies that problem (12.107) in Assumption (A3) is always
feasible.

Remark 12.13. Robust control invariance of the set O in Assumption (A2)
of Theorem 12.7 is also implicitly guaranteed by Assumption (A3) as shown
next.

From Remark 12.11, Assumption (A3) inO becomes minu maxwa,wp(p(A(wp)x+
B(wp)u + Ewa) ≤ 0 for all x ∈ O. From Assumption (A4), this can
be verified only if it is equal to zero, i.e. if it exists a u ∈ U such that
A(wp)x + B(wp)u + Ewa ∈ O for all wa ∈ Wa wp ∈ Wp (since O is the only
place where p(x) can be zero). This implies the robust control invariance of
O.

12.9 Literature Review

An extensive treatment of robust invariant sets can be found in [51, 52, 49, 53].
The proof to Theorem 12.1 can be fond in [158, 90] For the derivation of the
algorithms 12.1, 12.2 for computing robust invariant sets (and their finite
termination) see [10, 45, 158, 115, 151].

Min-max robust constrained optimal control was originally proposed by
Witsenhausen [264]. In the context of robust MPC, the problem was tackled
by Campo and Morari [71], and further developed in [5] for SISO FIR plants.
Kothare et al. [164] optimize robust performance for polytopic/multi-model
and linear fractional uncertainty, Scokaert and Mayne [232] for additive dis-
turbances, and Lee and Yu [172] for linear time-varying and time-invariant
state-space models depending on a vector of parameters θ ∈ Θ, where Θ
is either an ellipsoid or a polyhedron. Other suboptimal CROC-Cl strategies
have been proposed in [164, 25, 165]. For stability and feasibility of the robust
RHC (12.38), (12.104) we refer the reader to [38, 180, 188, 21].
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In previous chapters we have shown how to compute the solution to the
constrained finite time optimal control problem as an explicit piecewise affine
function of the initial state. This method reveals its effectiveness when applied
to Receding Horizon Control (RHC). Having a precomputed solution as an
explicit piecewise affine on polyhedra function of the state vector reduces
the on-line computation of the RHC control law to a function evaluation,
therefore avoiding the on-line solution of a quadratic or linear program. The
main drawback of such explicit optimal control law is that the number of
polyhedral regions could grow dramatically with the number of constraints
in the optimal control problem. In this chapter we focus on efficient on-line
methods for the evaluation of such a piecewise affine control law.

13.1 Introduction

In Chapter 10 we have shown how to compute the solution to the constrained
finite time optimal control (CFTOC) problem as an explicit piecewise affine
function of the initial state. Such a function is computed off-line by using a
multiparametric program solver, which divides the state space into polyhe-
dral regions, and for each region determines the linear gain and offset which
produces the optimal control action.

This method reveals its effectiveness when applied to Receding Horizon
Control (RHC). Having a precomputed solution as an explicit piecewise affine
on polyhedra (PPWA) function of the state vector reduces the on-line com-
putation of the RHC control law to a function evaluation, therefore avoiding
the on-line solution of a quadratic or linear program.

The main drawback of such explicit optimal control law is that the number
of polyhedral regions could grow dramatically with the number of constraints
in the optimal control problem. In this chapter we focus on efficient on-line
methods for the evaluation of such a piecewise affine control law.

The simplest way to implement the piecewise affine feedback laws is to
store the polyhedral cells {Hix ≤ Ki}, perform on-line a linear search
through them to locate the one which contains x(t) and then look up the
corresponding feedback gain (F i, gi) (note that this procedure can be easily
parallelized). This chapter presents implementation techniques which avoid
the storage and the evaluation of the polyhedral and can significantly reduce
the on-line storage demands and computational complexity of RHC. They
exploit the properties of the value function and the piecewise affine optimal
control law of the constrained finite time optimal control problem.
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13.2 Efficient On-Line Algorithms

Let the explicit optimal control law be:

u∗(x) = F ix + Gi, ∀x ∈ Pi, i = 1, . . . , Nr (13.1)

where F i ∈ Rm×n, Gi ∈ Rm, and Pi =
{
x ∈ Rn : Hix ≤ Ki, Hi ∈ RNi

c×n, Ki ∈ RNi
c

}
,

i = 1, . . . , N r is a polyhedral partition of X . In the following Hi
j denotes the

j-row of the matrix Hi and N i
c is the numbers of constraints defining the i-th

polyhedron. The on-line implementation of the control law (13.1) is simply
executed according to the following steps:

Algorithm 13.2.1

1 Measure the current state x(t)

2 Search for the j-th polyhedron that contains x(t), (Hjx(t) ≤ Kj)

3 Implement the j-th control law (u(t) = F jx(t) + Gj)

In Algorithm 13.2.1, step (2) is critical and it is the only step whose effi-
ciency can be improved. A simple implementation of step (2) would consist
of searching for the polyhedral region that contains the state x(t) as in the
following algorithm:

Algorithm 13.2.2

Input: Current state x(t) and polyhedral partion {Pi}N
r

i=1 of the control

law (13.1)

Output: Index j of the polyhedron Pj in the control law (13.1) con-

taining the current state x(t)

1 i = 0, notfound=1;

2 while i ≤ N r and notfound

3 j = 0, stillfeasible=1

4 while j ≤ N i
c and stillfeasible

5 if Hi
jx(t) > Ki

j then stillfeasible=0

6 else j = j + 1

7 end

8 if stillfeasible=1 then notfound=0

9 end

In Algorithm 13.2.2 Hi
j denotes the j-row of the matrix Hi, Ki

j denotes the

j-th element of the vector Ki and N i
c is the number of constraints defining the

i-th polyhedron Pi. Algorithm 13.2.2 requires the storage of all polyhedra Pi,
i.e., (n + 1)NC real numbers (n numbers for each row of the matrix Hi plus
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one number for the corresponding element in the matrix Ki), NC ,
∑Nr

i=1 N i
c ,

and in the worst case (the state is contained in the last region of the list)
it will give a solution after nNC multiplications, (n − 1)NC sums and NC

comparisons.

Remark 13.1. Note that Algorithm 13.2.2 can also deduce if the point x is not
inside of the feasible set X0 = ∪Nr

i=1Pi. As opposed to that, in the following
sections we implicitly assume that x belongs to X0. If this (reasonable) as-
sumptions does not hold, it is always possible to include set of boundaries of
feasible parameter space X0. Then, before using any of proposed algorithms,
we should first check if the point x is inside the boundaries of X0.

By using the properties of the value function, in this section we show how
Algorithm 13.2.2 can be replaced by more efficient algorithms that avoid stor-
ing the polyhedral regions Pi, i = 1, . . . , N r, therefore reducing significantly
the storage demand, and that have a smaller computational complexity.

In the following we will distinguish between optimal control based on LP
and optimal control based on QP.

13.2.1 Efficient Implementation, 1, ∞-Norm Case

From Corollary 10.5, the value function J∗(x) corresponding to the solution
of the CFTOC problem (11.45) with 1,∞-norm is convex and PWA:

J∗(x) = T i′x + V i, ∀x ∈ Pi, i = 1, . . . , N r. (13.2)

By exploiting the convexity of the value function the storage of the polyhe-
dral regions Pi can be avoided. From the equivalence of the representations
of PWA convex functions (see Section 4.1.5), the function J∗(x) in equa-
tion (13.2) can be represented alternatively as

J∗(x) = max
{

T i′x + V i, i = 1, . . . , Nr
}

for x ∈ X = ∪Nr

i=1Pi. (13.3)

Thus, the polyhedral region Pj containing x can be simply identified by

searching for the maximum number in the list {T i′x + V i}Nr

i=1:

x ∈ Pj ⇔ T j ′x + V j = max
{
T i′x + V i, i = 1, . . . , Nr

}
. (13.4)

Therefore, instead of searching for the polyhedron j that contains the point
x via Algorithm 13.2.2, we can just store the value function and identify region
j by searching for the maximum in the list of numbers composed of the single
affine function T i′x + V i evaluated at x (see Figure 13.1):
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Algorithm 13.2.3

Input: Current state x and value function 13.2

Output: Index j of the polyhedron Pj containing the current state x(t)

in the control law (13.1)

1 Compute the list L = {ni , T i′x + V i, i = 1, . . . , Nr}
2 Find j such that nj = maxni∈L ni

J
∗
(x

)

P1 P3 P4P2

z

T 1′x + V 1

T 2′x + V 2
T 3′x + V 3

T 4′x + V 4

0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

Fig. 13.1 Example for Algorithm 13.2.3 in one dimension: For a given point x ∈ P3

(x = 5) we have J∗(x) = max(T 1′x + V 1, . . . , T 4′x + V 4).

Algorithm 13.2.3 requires the storage of (n + 1)N r real numbers and will
give a solution after nN r multiplications, (n−1)N r sums, and N r−1 compar-
isons. In Table 13.1 we compare the complexity of Algorithm 13.2.3 against
Algorithm 13.2.2 in terms of storage demand and number of flops.

Table 13.1 Complexity comparison of Algorithm 13.2.2 and Algorithm 13.2.3

Algorithm 13.2.2 Algorithm 13.2.3
Storage demand (real numbers) (n + 1)NC (n + 1)Nr

Number of flops (worst case) 2nNC 2nNr

Remark 13.2. Algorithm 13.2.3 will outperform Algorithm 13.2.2 since typi-
cally NC ≫ N r.
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13.2.2 Efficient Implementation, 2-Norm Case

Consider the state feedback solution (10.38) of the CFTOC problem (10.32)
with p = 2. Theorem 10.2 states that the value function J∗(x) is convex and
piecewise quadratic on polyhedra and the simple Algorithm 13.2.3 described
in the previous subsection cannot be used here. Instead, a different approach
is described below. It uses a surrogate of the value function to uniquely
characterize the polyhedral partition of the optimal control law.

We will first establish the following general result: given a general poly-
hedral partition of the state space, we can locate where the state lies (i.e.,
in which polyhedron) by using a search procedure based on the information
provided by an “appropriate” PWA continuous function defined over the
same polyhedral partition. We will refer to such “appropriate” PWA func-
tion as PWA descriptor function. First we outline the properties of the PWA
descriptor function and then we describe the search procedure itself.

Let {Pi}N
r

i=1 be the polyhedral partition obtained by solving the mp-
QP (10.52) and denote by Ci = {j : Pj is a neighbor of Pi, j = 1, . . . , Nr, j 6= i}
the list of all neighboring polyhedra of Pi. The list Ci has N i

c elements and
we denote by Ci(k) its k-th element.

Definition 13.1 (PWA descriptor function). A continuous real-valued
PWA function

f(x) = fi(x) , Ai′x + Bi, if x ∈ Pi, (13.5)

is called descriptor function if

Ai 6= Aj , ∀j ∈ Ci, i = 1, . . . , Nr. (13.6)

Theorem 13.1. Let f(x) be a PWA descriptor function on the polyhedral
partition {Pi}Nr

i=1.

Let Oi(x) ∈ RNi
c be a vector associated with region Pi, and let the j-th

element of Oi(x) be defined as

Oi
j(x) =

{
+1 fi(x) > fCi(j)(x)
−1 fi(x) < fCi(j)(x)

(13.7)

Then Oi(x) has the following properties:

(i)Oi(x) = Si = const, ∀x ∈ Pi, i = 1, . . . , Nr.
(ii)Oi(x) 6= Si, ∀x /∈ Pi, i = 1, . . . , Nr.

Proof: Let F = Pi∩PCi(j) be the common facet of Pi and PCi(j). Define
the linear function

gi
j(x) = fi(x)− fCi(j)(x). (13.8)

From the continuity of f(x) it follows that gi
j(x) = 0, ∀x ∈ F . As Pi and

PCi(j) are disjoint convex polyhedra and Ai 6= ACi(j) it follows that gi
j(ξi) > 0
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(or gi
j(ξi) < 0, but not both) for any interior point ξi of Pi. Similarly for any

interior point ξCi(j) of PCi(j) we have gi
j(ξCi(j)) < 0 (or gj

i (ξi) > 0, but not

both). Consequently, gi
j(x) = 0 is the separating hyperplane between Pi and

PCi(j).
(i) Because gi

j(x) = 0 is a separating hyperplane, the function gi
j(x) does

not change its sign for all x ∈ Pi, i.e., Oi
j(x) = si

j , ∀x ∈ Pi with si
j = +1 or

si
j = −1. The same reasoning can be applied to all neighbors of Pi to get the

vector Si = {si
j} ∈ RNi

c .

(ii) ∀x /∈ Pi, ∃j ∈ Ci such that Hi
jx > Ki

j . Since gi
j(x) = 0 is a separating

hyperplane then Oi
j(x) = −si

j . 2

Equivalently, Theorem 13.1 states that

x ∈ Pi ⇔ Oi(x) = Si, (13.9)

which means that the function Oi(x) and the vector Si uniquely characterize
Pi. Therefore, to check on-line if the polyhedral region i contains the state
x it is sufficient to compute the binary vector Oi(x) and compare it with
Si. Vectors Si are calculated off-line for all i = 1, . . . , Nr, by comparing the
values of fi(x) and fCi(j)(x) for j = 1, . . . , N i

c , for a point x belonging to Pi,
for instance, the Chebychev center of Pi.

In Figure 13.2 a one dimensional example illustrates the procedure with
N r = 4 regions. The list of neighboring regions Ci and the vector Si can be
constructed by simply looking at the figure: C1 = {2}, C2 = {1, 3}, C3 =
{2, 4}, C4 = {3}, S1 = −1, S2 = [−1 1]′, S3 = [1 − 1]′, S4 = −1. The
point x = 4 is in region 2 and we have O2(x) = [−1 1]′ = S2, while O3(x) =
[−1 − 1]′ 6= S3, O1(x) = 1 6= S1, O4(x) = 1 6= S4. The failure of a match
Oi(x) = Si provides information on a good search direction(s). The solution
can be found by searching in the direction where a constraint is violated, i.e.,
one should check the neighboring region Pj for which Oi

j(x) 6= si
j .

The overall procedure is composed of two parts:

1. (off-line) Construction of the PWA function f(x) in (13.5) satisfy-
ing (13.6) and computation of the list of neighbors Ci and the vector
Si,

2. (on-line) Execution of the following algorithm
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Fig. 13.2 Example for Algorithm 13.2.4 in one dimension: For a given point x ∈ P2

(x = 4) we have O2(x) = [−1 1]′ = S2, while O1(x) = 1 6= S1 = −1, O3(x) =
[−1 − 1]′ 6= S3 = [1 − 1]′, O4(x) = 1 6= S4 = −1.

Algorithm 13.2.4

Input: Current state x, the list of neighboring regions Ci and the vectors

Si

Output: Index i of the polyhedron Pj containing the current state x(t)

in the control law (13.1)

1 i = 1, notfound=1;

2 while notfound

3 compute Oi(x)

4 if Oi(x) = Si then notfound=0

5 else i = Ci(q), where Oi
q(x) 6= si

q.

6 end

Algorithm 13.2.4 does not require the storage of the polyhedra Pi, but
only the storage of one linear function fi(x) per polyhedron, i.e., N r(n + 1)
real numbers and the list of neighbors Ci which requires NC integers. In the
worst case, Algorithm 13.2.4 terminates after N rn multiplications, N r(n−1)
sums and NC comparisons.

In Table 13.2 we compare the complexity of Algorithm 13.2.4 against the
standard Algorithm 13.2.2 in terms of storage demand and number of flops.
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Remark 13.3. Note that the computation of Oi(x) in Algorithm 13.2.4 re-
quires the evaluation of N i

c linear functions, but the overall computation
never exceeds N r linear function evaluations. Consequently, Algorithm 13.2.4
will outperform Algorithm 13.2.2, since typically NC ≫ N r.

Table 13.2 Complexity comparison of Algorithm 13.2.2 and Algorithm 13.2.4

Algorithm 13.2.2 Algorithm 13.2.4
Storage demand (real numbers) (n + 1)NC (n + 1)Nr

Number of flops (worst case) 2nNC (2n− 1)Nr + NC

Now that we have shown how to locate polyhedron in which state lies by
using a PWA descriptor function, we need a procedure for the construction
of such a function.

The image of the descriptor function is the set of real numbers R. In the
following we will show how descriptor function can be generate from a vector-
valued function m : Rn → Rs. This general result will be used in the next
subsections.

Definition 13.2 (Vector valued PWA descriptor function). A contin-
uous vector-valued PWA function

m(x) = Āix + B̄i, if x ∈ Pi, (13.10)

is called vector-valued PWA descriptor function if

Āi 6= Āj , ∀j ∈ Ci, i = 1, . . . , Nr. (13.11)

where Āi ∈ Rs×n, B̄i ∈ Rs.

Theorem 13.2. Given a vector-valued PWA descriptor function m(x) de-
fined over a polyhedral partition {Pi}Nr

i=1 it is possible to construct PWA de-
scriptor function f(x) over the same polyhedral partition.

Proof: Let Ni,j be the null-space of (Āi − Āj)′. Since by the definition
Āi − Āj 6= 0 it follows that Ni,j is not full dimensional, i.e., Ni,j ⊆ Rs−1.
Consequently, it is always possible to find a vector w ∈ Rs such that w(Āi −
Āj) 6= 0 holds for all i = 1, . . . , Nr and ∀j ∈ Ci. Clearly, f(x) = w′m(x) is
then a valid PWA descriptor function. 2

As shown in the proof of Theorem 13.2, once we have vector-valued PWA
descriptor function, practically any randomly chosen vector w ∈ Rs is likely
to be satisfactory for the construction of PWA descriptor function. But, from
a numerical point of view, we would like to obtain w that is as far away as
possible from the null-spaces Ni,j . We show one algorithm for finding such a
vector w.
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For a given vector-valued PWA descriptor function we form set of vectors
ak ∈ Rs, ‖ak‖ = 1, k = 1, . . . , NC/2, by taking and normalizing one (and
only one) nonzero column from each matrix (Āi−Āj), ∀j ∈ Ci, i = 1, . . . , Nr.
The vector w ∈ Rs satisfying the set of equations w′ak 6= 0, k = 1, . . . , NC/2,
can then be constructed by using the following algorithm1

Algorithm 13.2.5

Input: Vectors ai ∈ Rs, i = 1, . . . , N .

Output: The vector w ∈ Rs satisfying the set of equations w′ai 6=
0, i = 1, . . . , N

1 w ← [1, . . . , 1]′, R← 1

2 while k ≤ NC/2

3 d← w′ak

4 if 0 ≤ d ≤ R then w ← w + 1
2 (R− d)ak, R← 1

2 (R + d)

5 if −R ≤ d < 0 then w← w − 1
2 (R + d)ak, R← 1

2 (R− d)

6 end

Algorithm 13.2.5 is based on a construction of a sequence of balls B =
{x : x = w + r, ‖r‖2 ≤ R}. As depicted in Figure 13.3, Algorithm 13.2.5
starts with the initial ball of radius R = 1, centered at w = [1, . . . , 1]′.
Iteratively one hyperplane a′

kx = 0 at the time is introduced and the largest
ball B′ ⊆ B that does not intersect this hyperplane is designed. The center
w of the final ball is the vector w we wanted to construct, while R gives an
information about the degree of non-orthogonality: |w′ak| ≥ R, ∀k.

In the following subsections we will show that the gradient of the value
function, and the optimizer, are vector-valued PWA descriptor functions and
thus we can use Algorithm 13.2.5 for the construction of the PWA descriptor
function.

13.2.2.1 Generating a PWA descriptor function from the value
function

Let J∗(x) be the convex and piecewise quadratic (CPWQ) value function
obtained as a solution of the CFTOC (10.32) problem for p = 2:

J∗(x) = qi(x) , x′Qix + T i′x + V i, if x ∈ Pi, i = 1, . . . , N r. (13.12)

1 Index k goes to NC/2 since the term (Āj − Āi) is the same as (Āi − Āj) and thus
there is no need to consider it twice.
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Fig. 13.3 Illustration for Algorithm 13.2.5 in two dimensions.

In Section 6.3.4 we have proven that for non-degenerate problems the
value function J∗(x) is a C(1) function. We can obtain a vector-valued PWA
descriptor function by differentiating J∗(x).

Theorem 13.3. Consider the value function J∗(x) in (13.12) and assume
that the CFTOC (10.32) problem leads to a non-degenerate mp-QP (10.54).
Then the gradient m(x) , ∇J∗(x), is a vector-valued PWA descriptor func-
tion.

Proof: From Theorem 6.9 we see that m(x) is continuous vector-valued
PWA function, while from equation (6.63) we get

m(x) , ∇J∗(x) = 2Qix + Ti (13.13)

Since from Theorem 6.7 we know that Qi 6= Qj for all neighboring polyhedra,
it follows that m(x) satisfies all conditions for a vector-valued PWA descriptor
function. 2

Combining results of Theorem 13.3 and Theorem 13.2 it follows that by
using Algorithm 13.2.5 we can construct a PWA descriptor function from the
gradient of the value function J∗(x).
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13.2.2.2 Generating a PWA descriptor function from the optimal
inputs

Another way to construct descriptor function f(x) emerges naturally if we
look at the properties of the optimizer U∗

0 (x) corresponding to the state feed-
back solution of the CFTOC problem (10.32). From Theorem 6.6 it follows
that the optimizer U∗

0 (x) is continuous in x and piecewise affine on polyhedra:

U∗
0 (x) = li(x) , F ix + Gi, if x ∈ Pi, i = 1, . . . , Nr, (13.14)

where F i ∈ Rs×n and Gi ∈ Rs. We will assume that Pi are critical regions (as
defined in Section 6.1.2) Before going further we need the following lemma.

Lemma 13.1. Consider the state feedback solution (13.14) of the CFTOC
problem (10.32) and assume that the CFTOC (10.32) leads to a non-degenerate
mp-QP (10.54). Let Pi, Pj be two neighboring polyhedra, then F i 6= F j.

Proof: The proof is a simple consequence of Theorem 6.7. As in Theo-
rem 6.7, without loss of generality we can assume that the set of active con-
straints Ai associated with the critical region Pi is empty, i.e., Ai = ∅. Sup-
pose that the optimizer is the same for both polyhedra, i.e., [F i Gi] = [F j Gj ].
Then, the cost functions qi(x) and qj(x) are also equal. From the proof of
Theorem 6.7 this implies that Pi = Pj , which is a contradiction. Thus we
have [F i Gi] 6= [F j Gj ]. Note that F i = F j cannot happen since, from
the continuity of U∗

0 (x), this would imply Gi = Gj . Consequently we have
F i 6= F j . 2

From Lemma 13.1 and Theorem 13.2 it follows that an appropriate PWA
descriptor function f(x) can be calculated from the gradient of the optimizer
U∗(x) by using Algorithm 13.2.5.

Remark 13.4. Note that even if we are implementing receding horizon control
strategy, the construction of the PWA descriptor function is based on the full
optimization vector U∗(x) and the corresponding matrices F̄ i and Ḡi.

Remark 13.5. In some cases the use of the optimal control profile U∗(x) for
the construction of descriptor function f(x) can be extremely simple. If there
is a row r, r ≤ m (m is the dimension of u) for which (F i)r 6= (F j)r, ∀i =

1 . . . , N r, ∀j ∈ Ci, it is enough to set Ai′ = (F i)r and Bi = (Gi)r, where
(F i)r and (Gi)r denote the r-th row of the matrices F i and Gi, respectively.
In this way we avoid the storage of the descriptor function altogether, since
it is equal to one component of the control law, which is stored anyway.

13.3 Example

As an example, we compare the performance of Algorithm 13.2.2, 13.2.3
and 13.2.4 on CFTOC problem for the discrete-time system
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



x(t + 1) =




4 −1.5 0.5 −0.25
4 0 0 0
0 2 0 0
0 0 0.5 0


x(t) +




0.5
0
0
0


u(t)

y(t) =
[
0.083 0.22 0.11 0.02

]
x(t)

(13.15)

resulting from the linear system

y =
1

s4
u (13.16)

sampled at Ts = 1, subject to the input constraint

− 1 ≤ u(t) ≤ 1 (13.17)

and the output constraint

− 10 ≤ y(t) ≤ 10. (13.18)

13.3.1 CFTOC based on LP

To regulate (13.15), we design an receding horizon controller based on the
optimization problem (11.45) where p = ∞, N = 2, Q = diag{5, 10, 10, 10},
R = 0.8, P = 0. The PPWA solution of the mp-LP problem was computed
consists of 136 regions. In Table 13.3 we report the comparison between the
complexity of Algorithm 13.2.2 and Algorithm 13.2.3 for this example.

The average on-line evaluation of the PPWA solution for a set of 1000
random points in the state space is 2259 flops (Algorithm 13.2.2), and 1088
flops (Algorithm 13.2.3). We point out that the solution using Matlab’s LP
solver (function linprog.m with interior point algorithm and LargeScale set
to ’off’) takes 25459 flops on average.

Table 13.3 Complexity comparison of Algorithm 13.2.2 and Algorithm 13.2.3 for
the example in Section 13.3.1

Algorithm 13.2.2 Algorithm 13.2.3
Storage demand (real numbers) 5690 680
Number of flops (worst case) 9104 1088
Number of flops (average for 1000 random points) 2259 1088
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13.3.2 CFTOC based on QP

To regulate (13.15), we design a receding horizon controller based on the
optimization problem (11.45) where p = 2, N = 7, Q = I, R = 0.01, P =
0. The PPWA solution of the mp-QP problem consists of 213 regions. We
obtained a descriptor function from the value function and for this example
the choice of w = [1 0 0 0]′ is satisfactory. In Table 13.4 we report the
comparison between the complexity of Algorithm 13.2.2 and Algorithm 13.2.4
for this example.

The average computation of the PPWA solution for a set of 1000 random
points in the state space is 2114 flops (Algorithm 13.2.2), and 175 flops (Al-
gorithm 13.2.4). The solution of the corresponding quadratic program with
Matlab’s QP solver (function quadprog.m and LargeScale set to ’off’) takes
25221 flops on average.

Table 13.4 Complexity comparison of Algorithm 13.2.2 and Algorithm 13.2.4 for
the example in Section 13.3.2

Algorithm 13.2.2 Algorithm 13.2.4
Storage demand (real numbers) 9740 1065
Number of flops (worst case) 15584 3439
Number of flops (average for 1000 random points) 2114 175

13.4 Literature Review

The problem considered in this Chapter has been approached by several other
researchers. For instance in in [249] the authors propose to organize the con-
troller gains of the PWA control law on a balanced search tree. By doing
so, the search for the region containing the current state has a logarithmic
average computation complexity although less efficient in terms of memory
requirements. At the expense of the optimality of the solution a similar com-
putational complexity can be achieved with an approximative point location
algorithm described in [148].

The comparison of the proposed algorithms with other very efficient solvers
appeared in the literature [19, 50, 229, 96, 193, 196, 260] requires the simulta-
neous analysis of several issues such as speed of computation, storage demand
and real time code verifiability. This is an involved study and as such is out-
side of the scope of this book.
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Chapter 14

Models of Hybrid Systems

Hybrid systems describe the dynamical interaction between continuous and
discrete signals in one common framework (see Figure 14.1). In this chap-
ter we focus our attention on mathematical models of hybrid systems that
are particularly suitable for solving finite time constrained optimal control
problems.

14.1 Hybrid models

The mathematical model of a dynamical system is traditionally associated
with differential or difference equations, typically derived from physical laws
governing the dynamics of the system under consideration. Consequently,
most of the control theory and tools are based on models describing the
evolution of real-valued signals according to smooth linear or nonlinear state
transition functions, typically differential or difference equations. In many ap-
plications, however, the system to be controlled also contains discrete-valued
signals satisfying Boolean relations, if-then-else conditions, on/off conditions,
etc., that also involve the real-valued signals. An example would be an on/off
alarm signal triggered by an analog variable passing over a given threshold.
Hybrid systems describe in a common framework the dynamics of real-valued
variables, the dynamics of discrete variables, and their interaction.

In this chapter we will focus on discrete-time hybrid systems, that we will
call discrete hybrid automata (DHA), whose continuous dynamics is described
by linear difference equations and whose discrete dynamics is described by
finite state machines, both synchronized by the same clock [251]. A particular
case of DHA is the popular class of piecewise affine (PWA) systems [241]. Es-
sentially, PWA systems are switched affine systems whose mode depends on
the current location of the state vector, as depicted in Figure 14.2. PWA and
DHA systems can be translated into a form, denoted as mixed logical dynam-
ical (MLD) form, that is more suitable for solving optimization problems. In
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continuous 
dynamics

discrete 
dynamics 
and logic

binary
inputs

binary
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real-valued
outputs

real-valued
inputs

events
mode

switches

Fig. 14.1 Hybrid systems. Logic-based discrete dynamics and continuous dynamics
interact through events and mode switches

particular, complex finite time hybrid dynamical optimization problems can
be recast into mixed-integer linear or quadratic programs as will be shown in
Chapter 15.

In the book we will often refer to the tool HYSDEL (HYbrid Systems DE-
scription Language), a high level language for modeling and simulating DHA.
Therefore, DHA will represent for us the starting point for modeling hybrid
systems. We will show that DHA, PWA, and MLD systems are equivalent
model classes, and in particular that DHA systems can be converted to an
equivalent PWA or MLD form for solving optimal control problems.

After introducing PWA systems, we will go through the steps needed for
modeling a system as a DHA. We will first detail the process of translating
propositional logic involving Boolean variables and linear threshold events
over continuous variables into mixed-integer linear inequalities, generalizing
several results available in the literature, in order to get an equivalent MLD
form of a DHA system. Finally, we will briefly present the tool HYSDEL, that
allows describing the DHA in a textual form and obtain equivalent MLD and
PWA representations in MATLABTM.

14.2 Piecewise Affine Systems

Piecewise Affine (PWA) systems [241, 135] are defined by partitioning the
space of states and inputs into polyhedral regions (cf. Figure 14.2) and asso-
ciating with each region different affine state-update and output equations:
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x(t + 1) = Ai(t)x(t) + Bi(t)u(t) + f i(t) (14.1a)

y(t) = Ci(t)x(t) + Di(t)u(t) + gi(t) (14.1b)

i(t) such that Hi(t)x(t) + J i(t)u(t) ≤ Ki(t) (14.1c)

where x(t) ∈ Rn is the state vector at time t ∈ T and T , {0, 1, . . .} is the set
of nonnegative integers, u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the output
vector, i(t) ∈ I , {1, . . . , s} is the current mode of the system, the matrices
Ai(t), Bi(t), f i(t), Ci(t), Di(t), gi(t), Hi(t), J i(t), Ki(t) are constant and have
suitable dimensions, and the inequalities in (14.1c) should be interpreted
component-wise. Each linear inequality in (14.1c) defines a half-space in Rn

and a corresponding hyperplane, that will be also referred to as guardline.
Each vector inequality (14.1c) defines a polyhedron Ci = {[ x

u ] ∈ Rn+m :
Hix + J iu ≤ Ki} in the state+input space Rn+m that will be referred to as
cell, and the union of such polyhedral cells as partition. We assume that Ci

are full dimensional sets of Rn+m, for all i = 1, . . . , s.
A PWA system is called well-posed if it satisfies the following property [35]:

Definition 14.1. Let P be a PWA system of the form (14.1) and let C =
∪s

i=1Ci ⊆ Rn+m be the polyhedral partition associated with it. System P is
called well-posed if for all pairs (x(t), u(t)) ∈ C there exists only one index
i(t) satisfying (14.1).

Definition 14.1 implies that x(t + 1), y(t) are single-valued functions of x(t)
and u(t), and therefore that state and output trajectories are uniquely deter-
mined by the initial state and input trajectory. A relaxation of definition 14.1
is to let polyhedral cells Ci sharing one or more hyperplanes. In this case the
index i(t) is not uniquely defined, and therefore the PWA system is not well-
posed. However, if the mappings (x(t), u(t))→ x(t+1) and (x(t), u(t))→ y(t)
are continuous across the guardlines that are facets of two or more cells (and,
therefore, they are continuous on their domain of definition), such mappings
are still single valued.

14.2.1 Modeling Discontinuities

Discontinuous dynamical behaviors can be modeled by disconnecting the do-
main. For instance, the state-update equation

x(t + 1) =

{
1
2x(t) + 1 if x(t) ≤ 0
0 if x(t) > 0

(14.2a)

is discontinuous across x = 0. It can be modeled as

x(t + 1) =

{
1
2x(t) + 1 if x(t) ≤ 0
0 if x(t) ≥ ǫ

(14.2b)
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Fig. 14.2 Piecewise affine (PWA) systems. Mode switches are only triggered by
linear threshold events

where ǫ > 0 is an arbitrarily small number, for instance the machine precision.
Clearly, system (14.2) is not defined for 0 < x(t) < ǫ, i.e., for the values of the
state that cannot be represented in the machine. However, the trajectories
produced by (14.2a) and (14.2b) are identical as long as x(t) > ǫ or x(t) ≤ 0,
∀t ∈ N.

As remarked above, multiple definitions of the state-update and output
functions over common boundaries of sets Ci is a technical issue that arises
only when the PWA mapping is discontinuous. Rather than disconnecting
the domain, another way of dealing with discontinuous PWA mappings is
to allow strict inequalities in the definition of the polyhedral cells in (14.1),
or by dealing with open polyhedra and boundaries separately as in [241].
We prefer to assume that in the definition of the PWA dynamics (14.1) the
polyhedral cells Ci(t) are closed sets: As will be clear in the next chapter, the
closed-polyhedra description is mainly motivated by the fact that numerical
solvers cannot handle open sets.

Example 14.1. The following PWA system





x(t + 1) = 0.8

[
cosα(t) − sinα(t)
sin α(t) cosα(t)

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
0 1
]
x(t)

α(t) =

{
π
3 if [ 1 0 ] x(t) ≥ 0
−π

3 if [ 1 0 ] x(t) < 0

(14.3)

is discontinuous at x =
[

0
x2

]
, ∀x2 6= 0. It can be described in form (14.1) as





x(t + 1) =





0.4

[
1 −
√

3√
3 1

]
x(t) +

[
0
1

]
u(t) if

[
1 0
]
x(t) ≥ 0

0.4

[
1
√

3

−
√

3 1

]
x(t) +

[
0
1

]
u(t) if

[
1 0
]
x(t) ≤ −ǫ

y(t) =
[
0 1
]
x(t)

(14.4)
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Fig. 14.3 Free response of state x1 in Example 14.1 for x(0) = [1 0]

for all x1 ∈ (−∞,−ǫ] ∪ [0, +∞), x2 ∈ R, u ∈ R, and ǫ > 0.
Figure 14.3 shows the free response of the systems (open-loop simulation

of the system for a constant input u1 = 0) starting from the initial condition
x(0) = [1 0] with sampling time equal to 0.5s and ǫ = 10−6.

In case the partition C does not cover the whole space Rn+m, well-
posedness does not imply that trajectories are persistent, i.e., that for all
t ∈ N a successor state x(t + 1) and an output y(t) are defined. A typical
case of C 6= Rn+m is when we are dealing with bounded inputs and bounded
states umin ≤ u(t) ≤ umax, xmin ≤ x(t) ≤ xmax. By embedding such ranges
in the inequalities (14.1c), the system becomes undefined outside the bounds,
as no index i exists that satisfies any of the set of inequalities (14.1c).

As will be clearer in the next chapter, when model (14.1) is used in an
optimal control formulation, any input sequence and initial state that are
feasible for the related optimization problem automatically define unique
trajectories over the whole optimal control horizon.

PWA systems can model a large number of physical processes, as they
can model static nonlinearities through a piecewise affine approximation, or
approximate nonlinear dynamics via multiple linearizations at different op-
erating points. Moreover, tools exist nowadays for obtaining piecewise affine
approximations automatically (see Section 14.8).

When the mode i(t) is an exogenous variable, condition (14.1c) disappears
and we refer to (14.1) as a switched affine system (SAS), see Section 14.3.1.

14.2.2 Binary States, Inputs, and Outputs

When dealing with hybrid systems, quite often one encounters some signals
that can only assume a binary value, namely either 0 or 1. In the most
general form, let us assume that the state vector x = [ xc

xℓ
] where xc ∈ Rnc

are the continuous states, xℓ ∈ Rnℓ are the binary states, and set n , nc+nℓ.
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Similarly, let y ∈ Rpc×{0, 1}pℓ, p , pc+pℓ, u ∈ Rmc×{0, 1}mℓ, m , mc+mℓ.
By defining a polyhedral partition {Ci}s−1

i=0 of the sets of state and input space
Rn+m, for any xℓ ∈ {0, 1} and uℓ ∈ {0, 1} a sufficient condition for the PWA
system to be well posed is that the rows and columns of matrices Ai, Bi, Ci,
Di corresponding to binary states and binary outputs are zero and that the
corresponding rows of matrices f i, gi are either 0 or 1, i.e., that the binary
state update and output equations are binary piecewise constant functions.

In the following sections we will treat 0-1 binary variables both as numbers
(over which arithmetic operations are defined) and as Boolean variables (over
which Boolean functions are defined, see Section 14.3.3). The variable type
will be clear from the context.

As an example, it is easy to verify that the hybrid dynamical system

xc(t + 1) = 2xc(t) + uc(t)− 3uℓ(t) (14.5a)

xℓ(t + 1) = xℓ(t) ∧ uℓ(t) (14.5b)

where “∧” represents the logic operator “and”, can be represented in the
PWA form

[
xc

xℓ

]
(t + 1) =





[
2xc(t) + uc(t)

0

]
if xℓ ≤ 1

2 , uℓ ≤ 1
2

[
2xc(t) + uc(t)− 3

0

]
if xℓ ≤ 1

2 , uℓ ≥ 1
2 + ǫ

[
2xc(t) + uc(t)

0

]
if xℓ ≥ 1

2 + ǫ, uℓ ≤ 1
2

[
2xc(t) + uc(t)− 3

1

]
if xℓ ≥ 1

2 + ǫ, uℓ ≥ 1
2 + ǫ.

(14.5c)

by associating xℓ = 0 with xℓ ≤ 1
2 and xℓ = 1 with xℓ ≥ 1

2 + ǫ for any
0 < ǫ ≤ 1

2 . Note that, by assuming xℓ(0) ∈ {0, 1} and uℓ(t) ∈ {0, 1} for all
t ∈ T, xℓ(t) will be in {0, 1} for all t ∈ T.
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x1

u1

M

k(x1) b(u2)

(a) System with low viscous fric-
tion (u2 = 1)

x1

u1

M

k(x1) b(u2)

(b) System with high viscous fric-
tion (u2 = 0)

Fig. 14.4 Spring mass system of Example 14.2

Example 14.2. Consider the spring-mass system depicted in Figure 14.4(a),
where the spring has the nonlinear characteristics described in Figure 14.5.
The viscous friction coefficient can be instantaneously switched from one
value b1 to another different value b2 by instantaneously changing the geo-
metrical shape of the mass through a binary input u2 (see Figure 14.4(b)).

The system dynamics can be described in continuous-time as:

Mẋ2 = u1 − k(x1)− b(u2)x2

where x1 and x2 = ẋ1 denote the position and the speed of the mass, respec-
tively, u1 a continuous force input, and u2 binary input switching the friction
coefficient. The spring coefficient is

k(x1) =

{
k1x1 + d1 if x1 ≤ xm

k2x1 + d2 if x1 > xm,

and the viscous friction coefficient is

b(u2) =

{
b1 if u2 = 1
b2 if u2 = 0.

Assume the system description is valid for −5 ≤ x1, x2 ≤ 5, and for −10 ≤
u2 ≤ 10 (all units will be omitted here for simplicity).

The system has four modes, depending on the binary input and the region
of linearity. Assuming that the system parameters are M = 1, b1 = 1,
b2 = 50, k1 = 1, k2 = 3, d1 = 1, d2 = 7.5, xm = 1, after discretizing the
dynamics in each mode with a sampling time of 0.5 time units we obtain the
following discrete-time PWA system
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Fig. 14.6 Open-loop simulation of system (14.6) for u1 = 3 and zero initial condi-
tions

x(t+1) =





Mode 1[
0.8956 0.0198
−0.0198 −0.0004

]
x(t) + [ 0.1044

0.0198 ] u1(t) +
[−0.0096
−0.0198

]
if x1(t) ≤ 1, u2(t) ≤ 0.5

Mode 2[
0.8956 0.0195
−0.0584 −0.0012

]
x(t) + [ 0.1044

0.0195 ] u1(t) +
[−0.0711
−0.1459

]
if x1(t) ≥ 1 + ǫ, u2(t) ≤ 0.5

Mode 3[
0.8956 0.3773
−0.3773 0.5182

]
x(t) + [ 0.1044

0.3773 ] u1(t) +
[−0.1044
−0.3773

]
if x1(t) ≤ 1, u2(t) ≥ 0.5

Mode 4[
0.8956 0.3463
−1.0389 0.3529

]
x(t) + [ 0.1044

0.3463 ] u1(t) +
[−0.7519
−2.5972

]
if x(t) ≥ 1 + ǫ, u2(t) ≥ 0.5

(14.6)
for x1(t) ∈ [−5, 1] ∪ [1 + ǫ, 5], x2(t) ∈ [−5, 5], u(t) ∈ [−10, 10], and for any
arbitrary small ǫ > 0.
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Figure 14.6 shows the open-loop simulation of the system for a constant
continuous input u1 = 3, starting from zero initial conditions, under different
viscous coefficients, for ǫ = 10−6.

Example 14.3. Consider the following SISO system:

x1(t + 1) = ax1(t) + bu(t). (14.7)

A logic state x2 ∈ [0, 1] stores the information whether the state of sys-
tem (14.7) has ever gone below a certain lower bound xlb or not:

x2(t + 1) = x2(t)
∨

[x1(t) ≤ xlb], (14.8)

Assume that the input coefficient is a function of the logic state:

b =

{
b1 if x2 = 0
b2 if x2 = 1.

(14.9)

The system can be described by the PWA model:

x(t + 1) =





[
a 0
0 0

]
x(t) +

[
b2

0

]
u(t) +

[
0
1

]
if
[
1 0
]
x(t) ≤ xlb

[
a 0
0 1

]
x(t) +

[
b1

0

]
u(t) if

[
1 0
0 −1

]
x(t) ≥

[
xlb + ǫ
−0.5

]

[
a 0
0 1

]
x(t) +

[
b2

0

]
u(t) if x(t) ≥

[
xlb + ǫ

0.5

]

(14.10)
for u(t) ∈ R, x1(t) ∈ (−∞, xlb]∪ [xlb + ǫ, +∞), x2 ∈ {0, 1}, and for any ǫ > 0.

Figure 14.7 shows two open-loop simulations of the system, for a = 0.5,
b1 = 0.1, b2 = 0.3, xlb = −1, ǫ = 10−6. Note that when the continuous state
x1(t) goes below xlb = −1 at time t, then xℓ(t+1) triggers to 1 and the input
has a stronger effect on the states from time t+2 on. Indeed, the steady state
of x1 is a function of the logic state x2.

14.3 Discrete Hybrid Automata

As shown in Fig. 14.8, a discrete hybrid automaton (DHA) is formed by
generating the mode i(t) of a switched affine system through a mode selector
function that depends on (i) the discrete state of a finite state machine, (ii)
discrete events generated by the continuous variables of the switched affine
system exceeding given linear thresholds (the guardlines), (iii) exogenous
discrete inputs [251]. We will detail each of the four blocks in the next sections.
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Fig. 14.7 Open-loop simulation of system (14.10) for different input excitations

14.3.1 Switched Affine System (SAS)

A switched affine system is a collection of affine systems:

xc(t + 1) = Ai(t)xc(t) + Bi(t)uc(t) + f i(t), (14.11a)

yc(t) = Ci(t)xc(t) + Di(t)uc(t) + gi(t), (14.11b)

where t ∈ T is the time indicator, xc ∈ Rnc is the continuous state vector,
uc ∈ Rmc is the exogenous continuous input vector, yc ∈ Rpc is the contin-
uous output vector, {Ai, Bi, f i, Ci, Di, gi}i∈I is a collection of matrices of
suitable dimensions, and the mode i(t) ∈ I , {1, . . . , s} is an input signal
that determines the affine state update dynamics at time t. An SAS of the
form (14.11) preserves the value of the state when a mode switch occurs, but
it is possible to implement reset maps on an SAS as shown in [251].

14.3.2 Event Generator (EG)

An event generator is an object that generates a binary vector δe(t) ∈ {0, 1}ne

of event conditions according to the satisfaction of a linear (or affine) thresh-
old condition. Let h : Rnc × Rnc → {0, 1}ne be a vector function defined
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Fig. 14.8 A discrete hybrid automaton (DHA) is the connection of a finite state
machine (FSM) and a switched affine system (SAS), through a mode selector (MS)
and an event generator (EG). The output signals are omitted for clarity

as

hi(xc, uc) =

{
1 if (Hi)′xc + (J i)′uc + Ki ≤ 0
0 if (Hi)′xc + (J i)′uc + Ki > 0

where i denotes the ith component of a vector or the ith row of a matrix,
and A, B, C are constant matrices of suitable dimensions. Then, events are
defined as

δe(t) = h(xc(t), uc(t)) (14.12)

In particular, state events are modeled as [δe(t) = 1] ↔ [a′xc(t) ≤ b]. Note
that time events can be modeled as in (14.12) by adding the continuous time
as an additional continuous and autonomous state variable, τ(t+1) = τ(t)+
Ts, where Ts is the sampling time, and by letting [δe(t) = 1] ↔ [tTs ≥ τ0],
where τ0 is a given time. By doing so, the hybrid model can be written as a
time-invariant one. Clearly the same approach can be used for time-varying
events δe(t) = h(xc(t), uc(t), t), by using time-varying event conditions h :
Rnc × Rnc × T→ {0, 1}ne .
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14.3.3 Boolean Algebra

Before dealing in detail with the other blocks constituting the DHA and
introduce further notation, we recall here some basic definitions of Boolean
algebra1.

A variable δ is a Boolean variable if δ ∈ {0, 1}, where “δ = 0” means
something is false, “δ = 1” that is true. A Boolean expression is obtained
by combining Boolean variables through the logic operators ¬ (not), ∨ (or),
∧ (and), ← (implied by), → (implies), and ↔ (iff). A Boolean function f :
{0, 1}n−1 7→ {0, 1} is used to define a Boolean variable δn as a logic function
of other variables δ1, . . . , δn−1:

δn = f(δ1, δ2, . . . , δn−1) (14.13)

Given n Boolean variables δ1, . . . , δn, a Boolean formula F defines a relation

F (δ1, . . . , δn) (14.14)

that must hold true. Every Boolean formula F (δ1, δ2, . . . , δn) can be rewritten
in the conjunctive normal form (CNF)

(CNF)

m∧

j=1




 ∨

i∈Pj

δi


∨


 ∨

i∈Nj

∼ δi




 (14.15)

Nj , Pj ⊆ {1, . . . , n}, ∀j = 1, . . . , m.

As mentioned in Section 14.2.2, often we will use the term binary variable
and Boolean variable without distinction. An improper arithmetic operation
over Boolean variables should be understood as an arithmetic operation over
corresponding binary variables and, vice versa, an improper Boolean function
of binary variables should be interpreted as the same function over the cor-
responding Boolean variables. Therefore, from now on we will call “binary”
variables both 0-1 variables and Boolean variables.

14.3.4 Finite State Machine (FSM )

A finite state machine2 (or automaton) is a discrete dynamic process that
evolves according to a Boolean state update function:

1 A more comprehensive treatment of Boolean calculus can be found in digital circuit
design texts, e.g. [80, 132]. For a rigorous exposition see e.g. [192].
2 In this text we will only refer to synchronous finite state machines, where the
transitions may happen only at sampling times. The adjective synchronous will be
omitted for brevity.
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∼ δ3

δ1 ∧ uℓ2

δ1∧ ∼ uℓ2

δ2

δ3 ∧ uℓ1

∼ δ1

∼ uℓ1 ∧ δ3 ∼ δ2

Red

Green Blue

Fig. 14.9 Example of finite state machine

xℓ(t + 1) = fℓ(xℓ(t), uℓ(t), δe(t)), (14.16a)

where xℓ ∈ {0, 1}nℓ is the binary state, uℓ ∈ {0, 1}mℓ is the exogenous binary
input, δe(t) is the endogenous binary input coming from the EG, and fℓ :
{0, 1}nℓ ×{0, 1}mℓ × {0, 1}ne → {0, 1}nℓ is a deterministic Boolean function.

An FSM can be conveniently represented using an oriented graph. An FSM
may also have an associated binary output

yℓ(t) = gℓ(xℓ(t), uℓ(t), δe(t)), (14.16b)

where yℓ ∈ {0, 1}pℓ and gℓ : {0, 1}nℓ × {0, 1}mℓ × {0, 1}ne 7→ {0, 1}pℓ .

Example 14.4. Figure 14.9 shows a finite state machine where uℓ = [uℓ1 uℓ2]
′

is the input vector, and δ = [δ1 . . . δ3]
′ is a vector of signals coming from

the event generator. The Boolean state update function (also called state
transition function) is:

xℓ(t + 1) =





Red if ((xℓ(t) = Green)∧ ∼ δ3)∨
((xℓ(t) = Red)∧ ∼ δ1),

Green if ((xℓ(t) = Red) ∧ δ1 ∧ uℓ2)∨
((xℓ(t) = Blue) ∧ δ2)∨
((xℓ(t) = Green)∧ ∼ uℓ1 ∧ δ3),

Blue if ((xℓ(t) = Red) ∧ δ1∧ ∼ uℓ2)∨
((xℓ(t) = Green) ∧ (δ3 ∧ uℓ1))∨
((xℓ(t) = Blue)∧ ∼ δ2)).

(14.17)

By associating a binary vector xℓ = [ xℓ1
xℓ2

] to each state (Red = [ 0
0 ], Green =

[ 0
1 ], and Blue = [ 1

0 ]), one can rewrite (14.17) as:
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xℓ1(t + 1) = (∼ xℓ1∧ ∼ xℓ2 ∧ δ1∧ ∼ uℓ2) ∨
(xℓ1∧ ∼ δ2) ∨ (xℓ2 ∧ δ3 ∧ uℓ1),

xℓ2(t + 1) = (∼ xℓ1∧ ∼ xℓ2 ∧ δ1 ∧ uℓ2) ∨
(xℓ1 ∧ δ2) ∨ (xℓ2 ∧ δ3∧ ∼ uℓ1),

where the time index (t) has been omitted for brevity.

Since the Boolean state update function is deterministic, for each state the
conditions associated with all the outgoing arcs are mutually exclusive.

14.3.5 Mode Selector

In a DHA, the dynamic mode i(t) ∈ I = {1, . . . , s} of the SAS is a function
of the binary state xℓ(t), the binary input uℓ(t), and the events δe(t). With
a slight abuse of notation, let us indicate the mode i(t) through its binary
encoding, i(t) ∈ {0, 1}ns where ns = ⌈log2 s⌉, so that i(t) can be treated
as a vector of Boolean variables3. Then, we define the mode selector by the
Boolean function fM : {0, 1}nℓ × {0, 1}mℓ × {0, 1}ne → {0, 1}ns. The output
of this function

i(t) = µ(xℓ(t), uℓ(t), δe(t)) (14.18)

is called the active mode of the DHA at time t. We say that a mode switch
occurs at step t if i(t) 6= i(t − 1). Note that, in contrast to continuous-
time hybrid models where switches can occur at any time, in our discrete-
time setting, as mentioned earlier, a mode switch can only occur at sampling
instants.

14.3.6 DHA Trajectories

For a given initial condition
[

xc(0)
xℓ(0)

]
∈ Rnc × {0, 1}nℓ , and inputs

[
uc(t)
uℓ(t)

]
∈

Rmc × {0, 1}mℓ , t ∈ T, the state x(t) of the system is computed for all t ∈ T
by recursively iterating the set of equations:

3 Any discrete variable α ∈ {α1, . . . , αj} admits a Boolean encoding a ∈ {0, 1}d(j),
where d(j) is the number of bits used to represent α1, . . . , αj . For example, α ∈
{0, 1, 2} may be encoded as a ∈ {0, 1}2 by associating [ 00 ]→ 0, [ 01 ]→ 1, [ 10 ]→ 2.
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δe(t) = h(xc(t), uc(t), t) (14.19a)

i(t) = µ(xℓ(t), uℓ(t), δe(t)) (14.19b)

yc(t) = Ci(t)xc(t) + Di(t)uc(t) + gi(t) (14.19c)

yℓ(t) = gℓ(xℓ(t), uℓ(t), δe(t)) (14.19d)

xc(t + 1) = Ai(t)xc(t) + Bi(t)uc(t) + f i(t) (14.19e)

xℓ(t + 1) = fℓ(xℓ(t), uℓ(t), δe(t)) (14.19f)

A definition of well-posedness of DHA can be given similarly to Defini-
tion 14.1 by requiring that the successor states xc(t + 1), xℓ(t + 1) and the
outputs yc(t), yℓ(t) are uniquely defined functions of xc(t), xℓ(t), uc(t), uℓ(t)
defined by the DHA equations (14.19).

DHA can be considered as a subclass of hybrid automata (HA) [7]. The
main difference is in the time model: DHA are based on discrete time, HA
on continuous time. Moreover DHA models do not allow instantaneous tran-
sitions, and are deterministic, opposed to HA where any enabled transition
may occur in zero time. This has two consequences (i) DHA do not admit
live-locks (infinite switches in zero time), (ii) DHA do not admit Zeno behav-
iors (infinite switches in finite time). Finally in DHA models, guards, reset
maps and continuous dynamics are limited to linear (or affine) functions.

14.4 Logic and Mixed-Integer Inequalities

Despite the fact that DHA are rich in their expressiveness and are therefore
quite suitable for modeling and simulating a wide class of hybrid dynamical
systems, they are not directly suitable for solving optimal control problems,
because of their heterogeneous discrete and continuous nature. In this section
we want to describe how DHA can be translated into different hybrid models
that are more suitable for optimization. We highlight the main techniques of
the translation process, by generalizing several results that appeared in the
literature [117, 221, 262, 197, 76, 37, 143, 74, 252, 261, 202].

14.4.1 Transformation of Boolean Relations

Boolean formulas can be equivalently represented as integer linear inequali-
ties. For instance, δ1 ∨ δ2 = 1 is equivalent to δ1 + δ2 ≥ 1 [262]. Some equiva-
lences are reported in Table 14.1. The results of the table can be generalized
as follows.

Lemma 14.1. For every Boolean formula F (δ1, δ2, . . . , δn) there exists a
polyhedral set P such that a set of binary values {δ1, δ2, . . . , δn} satisfies the
Boolean formula F if and only if δ = [δ1 δ2 . . . δn]′ ∈ P .

TrungDuong
Line

TrungDuong
Line

TrungDuong
Line

TrungDuong
Line

TrungDuong
Line
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relation Boolean linear constraints

AND δ1 ∧ δ2 δ1 = 1, δ2 = 1 or δ1 + δ2 ≥ 2
OR δ1 ∨X2 δ1 + δ2 ≥ 1

NOT ∼ δ1 δ1 = 0
XOR δ1 ⊕ δ2 δ1 + δ2 = 1

IMPLY δ1 → δ2 δ1 − δ2 ≤ 0
IFF δ1 ↔ δ2 δ1 − δ2 = 0

ASSIGNMENT δ1 + (1 − δ3) ≥ 1
δ3 = δ1 ∧ δ2 δ3 ↔ δ1 ∧ δ2 δ2 + (1 − δ3) ≥ 1

(1− δ1) + (1− δ2) + δ3 ≥ 1

Table 14.1 Basic conversion of Boolean relations into mixed-integer inequalities.
Relations involving the inverted literals ∼ δ can be obtained by substituting (1 − δ)
for δ in the corresponding inequalities. More conversions are reported in [194], or can
be derived by (14.15)–(14.20)

Proof: Given a formula F , one way of constructing one of such polyhedra
P is to rewrite F in the conjunctive normal form (14.15), and then simply
define P as

P =





δ ∈ {0, 1}n :

1 ≤∑i∈P1
δi +

∑
i∈N1

(1− δi)
...

1 ≤∑i∈Pm
δi +

∑
i∈Nm

(1− δi)





(14.20)

2

The smallest polyhedron P associated with formula F has the follow-
ing geometric interpretation: Assume to list all the 0-1 combinations of δi’s
satisfying F (namely, to generate the truth table of F ), and think of each
combination as an n-dimensional binary vector in Rn, then P is the convex
hull of such vectors [76, 142, 195]. For methods to compute convex hulls, we
refer the reader to [101].

14.4.2 Translating DHA Components into Linear Mixed-Integer
Relations

Events of the form (14.12) can be expressed equivalently as

hi(xc(t), uc(t), t) ≤M i(1− δi
e), (14.21a)

hi(xc(t), uc(t), t) > miδi
e, i = 1, . . . , ne, (14.21b)

where M i, mi are upper and lower bounds, respectively, on hi(xc(t), uc(t), t).
As we have pointed out in Section 14.2.1, from a computational viewpoint
it is convenient to avoid strict inequalities. As suggested in [262], we modify
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the strict inequality (14.21b) into

hi(xc(t), uc(t), t) ≥ ǫ + (mi − ǫ)δi
e (14.21c)

where ǫ is a small positive scalar (e.g., the machine precision). Clearly, as for
the case of discontinuous PWA discussed in Section 14.2.1, Equations (14.21)
or (14.12) are equivalent to (14.21c) only for hi(xc(t), uc(t), t) ≤ 0 and
hi(xc(t), uc(t), t) ≥ ǫ.

Regarding switched affine dynamics, we first rewrite the state-update equa-
tion (14.11a) as the following combination of affine terms and if-then-else
conditions:

z1(t) =

{
A1xc(t) + B1uc(t) + f1, if (i(t) = 1),
0, otherwise,

(14.22a)

...

zs(t) =

{
Asxc(t) + Bsuc(t) + fs, if (i(t) = s),
0, otherwise,

(14.22b)

xc(t + 1) =

s∑

i=1

zi(t), (14.22c)

where zi(t) ∈ Rnc , i = 1, . . . , s. The output equation (14.11b) admits a similar
transformation.

A generic if-then-else construct of the form

IF δ THEN z = a1′

x + b1′

u + f1 ELSE z = a2′

x + b2′

u + f2, (14.23)

where δ ∈ {0, 1}, z ∈ R, x ∈ Rn, u ∈ Rm, and a1, b1, f1, a2, b2, f2 are
constants of suitable dimensions, can be translated into [41]

(m2 −M1)δ + z ≤ a2′

x + b2′

u + f2, (14.24a)

(m1 −M2)δ − z ≤ −a2′

x− b2′

u− f2, (14.24b)

(m1 −M2)(1 − δ) + z ≤ a1′

x + b1′

u + f1, (14.24c)

(m2 −M1)(1 − δ)− z ≤ −a1′

x− b1′

u− f1, (14.24d)

where Mi, mi are upper and lower bounds on aix + biu + f i, i = 1, 2.
Finally, the mode selector function and binary state-update function of the

automaton are Boolean functions that can be translated into integer linear
inequalities as described in Section 14.4.1. The idea of transforming a well-
posed FSM into a set of Boolean equalities was also presented in [207] where
the authors performed model checking using (mixed) integer optimization on
an equivalent set of integer inequalities.



322 14 Models of Hybrid Systems

14.5 Mixed Logical Dynamical Systems

Given a DHA representation of a hybrid process, by following the techniques
described in the previous section for converting logical relations into inequal-
ities we obtain an equivalent representation of the DHA as a mixed logical
dynamical (MLD) system [37] described by the following relations:

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t) + B5, (14.25a)

y(t) = Cx(t) + D1u(t) + D2δ(t) + D3z(t) + D5, (14.25b)

E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5, (14.25c)

where x ∈ Rnc × {0, 1}nℓ is a vector of continuous and binary states, u ∈
Rmc×{0, 1}mℓ are the inputs, y ∈ Rpc×{0, 1}pℓ the outputs, δ ∈ {0, 1}rℓ are
auxiliary binary variables, z ∈ Rrc are continuous auxiliary variables which
arise in the transformation (see Example 14.5), and A, B1, B2, B3, C, D1, D2,
D3, E1,. . . ,E5 are matrices of suitable dimensions. Given the current state
x(t) and input u(t), the time-evolution of (14.25) is determined by finding
a feasible value for δ(t) and z(t) satisfying (14.25c), and then by computing
x(t + 1) and y(t) from (14.25a)–(14.25b).

As MLD models consist of a collection of linear difference equations involv-
ing both real and binary variables and a set of linear inequality constraints,
they are model representations of hybrid systems that can be easily used in
optimization algorithms, as will be described in Chapter 15.

A definition of well-posedness of the MLD system (14.25) can be given
similarly to Definition 14.1 by requiring that for all x(t) and u(t) within a
given bounded set the pair of variables δ(t), z(t) satisfying (14.25c) is unique,
so that the successor state x(t +1) and output y(t) are also uniquely defined
functions of x(t), u(t) through (14.25a)–(14.25b)4. Such a well-posedness as-
sumption is usually guaranteed by the procedure described in Section 14.3.3
used to generate the linear inequalities (14.25c). A numerical test for well-
posedness is reported in [37, Appendix 1].

Note that the constraints (14.25c) allow one to specify additional linear
constraints on continuous variables (e.g., constraints over physical variables
of the system), and logical constraints over Boolean variables. The ability to
include constraints, constraint prioritization, and heuristics adds to the ex-
pressiveness and generality of the MLD framework. Note also that despite the
fact that the description (14.25) seems to be linear, clearly the nonlinearity
is concentrated in the integrality constraints over binary variables.

Example 14.5. Consider the following simple switched linear system [37]

x(t + 1) =

{
0.8x(t) + u(t) if x(t) ≥ 0
−0.8x(t) + u(t) if x(t) < 0

(14.26)

4 For a more general definition of well-posedness of MLD systems see [37].
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where x(t) ∈ [−10, 10], and u(t) ∈ [−1, 1]. The condition x(t) ≥ 0 can be
associated to an event variable δ(t) ∈ {0, 1} defined as

[δ(t) = 1] ↔ [x(t) ≥ 0] (14.27)

By using the transformations (14.21a)–(14.21c), equation (14.27) can be ex-
pressed by the inequalities

−mδ(t) ≤ x(t)−m (14.28a)

−(M + ǫ)δ(t) ≤ −x(t)− ǫ (14.28b)

where M = −m = 10, and ǫ is an arbitrarily small positive scalar.
Then (14.26) can be rewritten as

x(t + 1) = 1.6δ(t)x(t)− 0.8x(t) + u(t) (14.29)

By defining a new variable z(t) = δ(t)x(t) which, by (14.23)–(14.24) can be
expressed as

z(t) ≤ Mδ(t) (14.30a)

z(t) ≥ mδ(t) (14.30b)

z(t) ≤ x(t)−m(1 − δ(t)) (14.30c)

z(t) ≥ x(t)−M(1− δ(t)) (14.30d)

the evolution of system (14.26) is ruled by the linear equation

x(t + 1) = 1.6z(t)− 0.8x(t) + u(t) (14.31)

subject to the linear constraints (14.28) and (14.30). Therefore, the MLD
equivalent representation of (14.26) for x ∈ [−10,−ǫ]∪ [0, 10] and u ∈ [−1, 1]
is given by collecting Equations (14.31), (14.28) and (14.30).

14.6 Model Equivalence

In the previous chapters we have presented three different classes of discrete-
time hybrid models: PWA systems, DHA, and MLD systems. For what we
described in Section 14.3.3, under the assumption that the set of valid states
and inputs is bounded, DHA systems can always be equivalently described as
MLD systems. Also, a PWA system is a special case of a DHA whose threshold
events and mode selector function are defined by the PWA partition (14.1c).
Therefore, a PWA system with bounded partition C can always be described
as an MLD system (an efficient way of modeling PWA systems in MLD form
is reported in [37]). The converse result, namely that MLD systems (and
therefore DHA) can be represented as PWA systems, is less obvious. For
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any choice of δ, model (14.25) represented an affine system defined over a
polyhedral domain. Under the assumption of well posedness these domains
do not overlap. This result was proved formally in [31, 26, 113].

Such equivalence results are of interest because DHA are most suitable in
the modeling phase, but MLD systems are most suitable for solving open-loop
finite time optimal control problems, and PWA systems are most suitable for
solving finite time optimal control problems in state-feedback form, as will
be described in Chapter 15.

14.7 The HYSDEL Modeling Language

A modeling language was proposed in [251] to describe DHA models, called
HYbrid System DEscription Language (HYSDEL). The HYSDEL description
of a DHA is an abstract modeling step. The associated HYSDEL compiler
then translates the description into several computational models, in partic-
ular into an MLD using the technique presented in Section 14.4, and PWA
form using either the approach of [113] or the approach of [26]. HYSDEL
can generate also a simulator that runs as a function in MATLABTM. Both
the HYSDEL compiler 5 and the Hybrid Toolbox6 can import and convert
HYSDEL models.

In this section we illustrate the functionality of HYSDEL through a set of
examples. For more examples and the detailed syntax we refer the interested
reader to [250].

Example 14.6. Consider the DHA system:

SAS: x′
c(t) =





xc(t) + uc(t)− 1, if i(t) = 1,
2xc(t), if i(t) = 2,
2, if i(t) = 3,

(14.32a)

EG:

{
δe(t) = [xc(t) ≥ 0],
δf (t) = [xc(t) + uc(t)− 1 ≥ 0],

(14.32b)

MS: i(t) =





1, if
[

δe(t)
δf (t)

]
= [ 0

0 ] ,

2, if δe(t) = 1,

3, if
[

δe(t)
δf (t)

]
= [ 0

1 ] .

(14.32c)

The corresponding HYSDEL list is reported in Table 14.2.
The HYSDEL list is composed of two parts. The first one, called INTER-

FACE, contains the declaration of all variables and parameters, so that it
is possible to make the proper type checks. The second part, IMPLEMEN-

5 http://control.ee.ethz.ch/ ˜ hybrid/hysdel
6 http://www.dii.unisi.it/hybrid/toolbox

http://control.ee.ethz.ch/~hybrid/hysdel
http://www.dii.unisi.it/hybrid/toolbox


14.7 The HYSDEL Modeling Language 325

SYSTEM sample {
INTERFACE {

STATE {
REAL xr [-10, 10]; }

INPUT {
REAL ur [-2, 2]; }

}
IMPLEMENTATION {

AUX {
REAL z1, z2, z3;
BOOL de, df, d1, d2, d3; }

AD {
de = xr >= 0;
df = xr + ur - 1 >= 0; }

LOGIC {
d1 = ˜de & ˜df;
d2 = de;
d3 = ˜de & df; }

DA {
z1 = {IF d1 THEN xr + ur - 1 };
z2 = {IF d2 THEN 2 * xr };
z3 = {IF (˜de & df) THEN 2 }; }

CONTINUOUS {
xr = z1 + z2 + z3; }

}}

Table 14.2 Sample HYSDEL list of system (14.32)

TATION, is composed of specialized sections where the relations among the
variables are described. These sections are described next.

The HYSDEL section AUX contains the declaration of the auxiliary vari-
ables used in the model. The HYSDEL section AD allows one to define
Boolean variables from continuous ones, and is based exactly on the seman-
tics of the event generator (EG) described earlier. The HYSDEL section DA

defines continuous variables according to if-then-else conditions. This section
models part of the switched affine system (SAS), namely the variables zi

defined in (14.22a)–(14.22b). The CONTINUOUS section describes the linear
dynamics, expressed as difference equations. This section models (14.22c).
The section LOGIC allows one to specify arbitrary functions of Boolean vari-
ables.

Example 14.7. Consider again the PWA system described in Example 14.1.
Assume that [−5, 5]× [−5, 5] is the set of states x(t) of interest and u(t) ∈
[−1, 1]. By using HYSDEL the PWA system (14.3) is described as in Ta-
ble 14.3 and the equivalent MLD form is obtained
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/ * 2x2 PWA system * /

SYSTEM pwa {

INTERFACE {
STATE { REAL x1 [-5,5];

REAL x2 [-5,5];
}

INPUT { REAL u [-1,1];
}

OUTPUT{ REAL y;
}

PARAMETER {
REAL alpha = 60 * pi/180;
REAL C = cos(alpha);
REAL S = sin(alpha);
REAL MLD_epsilon = 1e-6; }

}

IMPLEMENTATION {
AUX { REAL z1,z2;

BOOL sign; }
AD { sign = x1<=0; }

DA { z1 = {IF sign THEN 0.8 * (C * x1+S* x2)
ELSE 0.8 * (C * x1-S * x2) };

z2 = {IF sign THEN 0.8 * (-S * x1+C* x2)
ELSE 0.8 * (S * x1+C* x2) }; }

CONTINUOUS { x1 = z1;
x2 = z2+u; }

OUTPUT { y = x2; }
}

}

Table 14.3 HYSDEL model of the PWA system described in Example 14.1

x(t + 1) = [ 1 0
0 1 ] z(t) + [ 0

1 ] u(t)
y(t) = [ 0 1 ] x(t)



−5−ǫ
5
c1
c1
−c1
−c1
c1
c1
−c1
−c1




δ(t) +




0 0
0 0
−1 0
1 0
−1 0
1 0
0 −1
0 1
0 −1
0 1




z(t) ≤




1 0
−1 0
−0.4 −c2
0.4 c2
−0.4 c2
0.4 −c2
c2 −0.4
−c2 0.4
−c2 −0.4
c2 0.4




x(t) +




−ǫ
5
c1
c1
0
0
c1
c1
0
0




.

where c1 = 4(
√

3 + 1), c2 = 0.4
√

3, ǫ = 10−6. Note that in Table 14.3 the
OUTPUT section allows to specify a linear map for the output vector y.

Example 14.8. Consider again the hybrid spring-mass system described in
Example 14.2. Assume that [−5, 5]× [−5, 5] is the set of states x and [−10, 10]
the set of continuous inputs u1 of interest. By using HYSDEL, system (14.6) is
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/ * Spring-Mass System
* /

SYSTEM springmass {

INTERFACE { / * Description of variables and constants * /

STATE {
REAL x1 [-5,5];
REAL x2 [-5,5];

}

INPUT { REAL u1 [-10,10];
BOOL u2;

}

PARAMETER {
/ * Spring breakpoint * /
REAL xm;

/ * Dynamic coefficients * /
REAL A111,A112,A121,A122,A211,A212,A221,A222;
REAL A311,A312,A321,A322,A411,A412,A421,A422;
REAL B111,B112,B121,B122,B211,B212,B221,B222;
REAL B311,B312,B321,B322,B411,B412,B421,B422;

}
}

IMPLEMENTATION {
AUX {

REAL zx11,zx12,zx21,zx22,zx31,zx32,zx41,zx42;
BOOL region;

}

AD { / * spring region * /
region = x1-xm <= 0;

}

DA {
zx11 = { IF region & u2 THEN A111 * x1+A112 * x2+B111 * u1+B112};
zx12 = { IF region & u2 THEN A121 * x1+A122 * x2+B121 * u1+B122};
zx21 = { IF region & ˜u2 THEN A211 * x1+A212 * x2+B211 * u1+B212};
zx22 = { IF region & ˜u2 THEN A221 * x1+A222 * x2+B221 * u1+B222};
zx31 = { IF ˜region & u2 THEN A311 * x1+A312 * x2+B311 * u1+B312};
zx32 = { IF ˜region & u2 THEN A321 * x1+A322 * x2+B321 * u1+B322};
zx41 = { IF ˜region & ˜u2 THEN A411 * x1+A412 * x2+B411 * u1+B412};
zx42 = { IF ˜region & ˜u2 THEN A421 * x1+A422 * x2+B421 * u1+B422};

}

CONTINUOUS { x1=zx11+zx21+zx31+zx41;
x2=zx12+zx22+zx32+zx42;

}
}

}

Table 14.4 HYSDEL model of the spring-mass system described in Example 14.2
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described as in Table 14.4 and an equivalent MLD model with 2 continuous
states, 1 continuous input, 1 binary input, 9 auxiliary binary variables, 8
continuous variables, and 58 mixed-integer inequalities is obtained.

/ * System with logic state * /

SYSTEM SLS {
INTERFACE { / * Description of variables and constants * /

STATE {
REAL x1 [-1000,1000];
BOOL x2;

}
INPUT { REAL u [-1000,1000];

}
PARAMETER {

/ * Lower Bound Point * /
REAL xlb = -1;

/ * Dynamic coefficients * /
REAL a = .5;
REAL b1 =.1;
REAL b2 =.3;

}
}

IMPLEMENTATION {
AUX {BOOL region;

REAL zx1;
}
AD { / * PWA Region * /

region = x1-xlb <= 0;
}
DA { zx1={IF x2 THEN a * x1+b2 * u ELSE a* x1+b1 * u};
}
CONTINUOUS { x1=zx1;
}
AUTOMATA { x2= x2 | region;
}

}
}

Table 14.5 HYSDEL model of the system with logic state described in Example 14.3

Example 14.9. Consider again the system with a logic state described in Ex-
ample 14.3. The MLD model obtained by compiling the HYSDEL list of
Table 14.5 is
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x(t + 1) =

[
0 0
0 1

]
δ(t) +

[
1
0

]
z(t)




−9 0
11 0
0 0
0 0
0 0
0 0
0 −1
1 −1
−1 1




δ(t) +




0
0
−1
1
−1
1
0
0
0




z(t) ≤




0
0
−0.3
0.3
−0.1
0.1
0
0
0




u(t) +




1 0
−1 0
−0.5 −14
0.5 −14
−0.5 14

1 14
0 −1
0 0
0 1




x(t) +




1
10
14
14
0
0
0
0
0




where we have assumed that [−10, 10] is the set of states x1 and [−10, 10] the
set of continuous inputs u of interest. In Table 14.5 the AUTOMATA section
specifies the state transition equations of the finite state machine (FSM) as
a collection of Boolean functions.

14.8 Literature Review

The lack of a general theory and of systematic design tools for systems hav-
ing such a heterogeneous dynamical discrete and continuous nature led to a
considerable interest in the study of hybrid systems. After the seminal work
published in 1966 by Witsenhausen [263], who examined an optimal control
problem for a class of hybrid-state continuous-time dynamical systems, there
has been a renewed interest in the study of hybrid systems. The main reason
for such an interest is probably the recent advent of technological innovations,
in particular in the domain of embedded systems, where a logical/discrete de-
cision device is “embedded” in a physical dynamical environment to change
the behavior of the environment itself. Another reason is the availability of
several software packages for simulation and numerical/symbolic computa-
tion that support the theoretical developments.

Several modelling frameworks for hybrid systems have appeared in the lit-
erature. We refer the interested reader to [9, ?] and the references therein.
Each class is usually tailored to solve a particular problem, and many
of them look largely dissimilar, at least at first sight. Two main cate-
gories of hybrid systems were successfully adopted for analysis and syn-
thesis [58]: hybrid control systems [178, 179], where continuous dynamical
systems and discrete/logic automata interact (see Fig. 14.1), and switched
systems [241, 59, 145, 266, 235], where the state-space is partitioned into re-
gions, each one being associated with a different continuous dynamics (see
Fig. 14.2).

Today, there is a widespread agreement in defining hybrid systems as dy-
namical systems that switch among many operating modes, where each mode
is governed by its own characteristic dynamical laws, and mode transitions are
triggered by variables crossing specific thresholds (state events), by the lapse
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of certain time periods (time events), or by external inputs (input events) [9].
In the literature, systems whose mode only depends on external inputs are
usually called switched systems, the others switching systems.

Complex systems organized in a hierarchial manner, where, for instance,
discrete planning algorithms at the higher level interact with continuous con-
trol algorithms and processes at the lower level, are another example of hybrid
systems. In these systems, the hierarchical organization helps to manage the
complexity of the system, as higher levels in the hierarchy require less detailed
models (also called abstractions) of the lower levels functions.

Hybrid systems arise in a large number of application areas and are attract-
ing increasing attention in both academic theory-oriented circles as well as in
industry, for instance in the automotive industry [15, 146, 55, 116, 69, 198].
Moreover, many physical phenomena admit a natural hybrid description,
like circuits involving relays or diodes [24], biomolecular networks [6], and
TCP/IP networks in [139].

In this book we have worked exclusively with dynamical systems formu-
lated in discrete time. This chapter therefore focused on hybrid models for-
mulated in discrete time. Though the effects of sampling can be neglected
in most applications, some interesting mathematical phenomena occurring in
hybrid systems, such as Zeno behaviors [147] do not exist in discrete time,
as switches can only occur at sampling instants. On the other hand, most of
these phenomena are usually a consequence of the continuous-time switching
model, rather than the real behavior. Our main motivation for concentrat-
ing on discrete-time models is that optimal control problems are easier to
formulate and to solve numerically than continuous-time formulations.

In the theory of hybrid systems, several problems were investigated in the
last few years. Besides the issues of existence and computation of trajectories
described in Section 14.1, several other issues were considered. These include:
equivalence of hybrid models, stability and passivity analysis, reachability
analysis and verification of safety properties, controller synthesis, observabil-
ity analysis, state estimation and fault detection schemes, system identifica-
tion, stochastic and event-driven dynamics. We will briefly review some of
these results in the next paragraphs and provide pointers to some relevant
literature references.

Equivalence of Linear Hybrid Systems

Under the condition that the MLD system is well-posed, the result showing
that an MLD systems admits an equivalent PWA representation was proved
in [31]. A slightly different and more general proof is reported in [26], where
the author also provides efficient MLD to PWA translation algorithms. A
different algorithm for obtaining a PWA representation of a DHA is reported
in [113].
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The fact that PWA systems are equivalent to interconnections of linear
systems and finite automata was pointed out by Sontag [242]. In [138, 35]
the authors proved the equivalence of discrete-time PWA/MLD systems with
other classes of discrete-time hybrid systems (under some assumptions) such
as linear complementarity (LC) systems [136, 254, 137], extended linear com-
plementarity (ELC) systems [85], and max-min-plus-scaling (MMPS) sys-
tems [86].

Stability Analysis

Piecewise quadratic Lyapunov stability is becoming a standard in the stability
analysis of hybrid systems [145, 87, 93, 209, 210]. It is a deductive way to prove
the stability of an equilibrium point of a subclass of hybrid systems (piecewise
affine systems). The computational burden is usually low, at the price of a
convex relaxation of the problem, that leads to possibly conservative results.
Such conservativeness can be reduced by constructing piecewise polynomial
Lyapunov functions via semidefinite programming by means of the sum of
squares (SOS) decomposition of multivariate polynomials [208]. SOS methods
for analyzing stability of continuous-time hybrid and switched systems are
described in [214]. For the general class of switched systems of the form ẋ =
fi(x), i = 1, . . . , s, an extension of the Lyapunov criterion based on multiple
Lyapunov functions was introduced in [59]. The reader is also referred to the
book of Liberzon [174].

The research on stability criteria for PWA systems has been motivated by
the fact that the stability of each component subsystem is not sufficient to
guarantee stability of a PWA system (and vice versa). Branicky [59], gives
an example where stable subsystems are suitably combined to generate an
unstable PWA system. Stable systems constructed from unstable ones have
been reported in [253]. These examples point out that restrictions on the
switching have to be imposed in order to guarantee that a PWA composition
of stable components remains stable.

Passivity analysis of hybrid models has received very little attention, ex-
cept for the contributions of [70, 182, 269] and [212], in which notions of pas-
sivity for continuous-time hybrid systems are formulated, and of [27], where
passivity and synthesis of passifying controllers for discrete-time PWA sys-
tems are investigated.

Reachability Analysis and Verification of Safety Properties

Although simulation allows to probe a model for a certain initial condition
and input excitation, any analysis based on simulation is likely to miss the
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subtle phenomena that a model may generate, especially in the case of hy-
brid models. Reachability analysis (also referred to as “safety analysis” or
“formal verification”), aims at detecting if a hybrid model will eventually
reach unsafe state configurations or satisfy a temporal logic formula [7] for
all possible initial conditions and input excitations within a prescribed set.
Reachability analysis relies on a reach set computation algorithm, which is
strongly related to the mathematical model of the system. In the case of
MLD systems, for example, the reachability analysis problem over a finite
time horizon (also referred to as bounded model checking) can be cast as a
mixed-integer feasibility problem. Reachability analysis was also investigated
via bisimulation ideas, namely by analyzing the properties of a simpler, more
abstract system instead of those of the original hybrid dynamics [206].

Timed automata and hybrid automata have proved to be a successful
modeling framework for formal verification and have been widely used in
the literature. The starting point for both models is a finite state machine
equipped with continuous dynamics. In the theory of timed automata, the dy-
namic part is the continuous-time flow ẋ = 1. Efficient computational tools
complete the theory of timed automata and allow one to perform verifica-
tion and scheduling of such models. Timed automata were extended to linear
hybrid automata [7], where the dynamics is modeled by the differential inclu-
sion a ≤ ẋ ≤ b. Specific tools allow one to verify such models against safety
and liveness requirements. Linear hybrid automata were further extended to
hybrid automata where the continuous dynamics is governed by differential
equations. Tools exist to model and analyze those systems, either directly or
by approximating the model with timed automata or linear hybrid automata
(see e.g. the survey paper [239]).

Control

The majority of the control approaches for hybrid systems is based on op-
timal control ideas (see the survey [265]). For continuous-time hybrid sys-
tems, most authors either studied necessary conditions for a trajectory to
be optimal [211, 245], or focused on the computation of optimal/suboptimal
solutions by means of dynamic programming or the maximum principle [119,
222, 133, 134, 73, 266, 175, 234, 238, 241, 247, 62, 131, 179, 119, 61, 225, 67]
The hybrid optimal control problem becomes less complex when the dynam-
ics is expressed in discrete-time, as the main source of complexity becomes
the combinatorial (yet finite) number of possible switching sequences. As will
be shown in Chapter 15, optimal control problems can be solved for discrete-
time hybrid systems using either the PWA or the MLD models described
in this chapter. The solution to optimal control problems for discrete-time
hybrid systems was first outlined by Sontag in [241]. In his plenary presen-
tation [186] at the 2001 European Control Conference Mayne presented an
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intuitively appealing characterization of the state feedback solution to op-
timal control problems for linear hybrid systems with performance criteria
based on quadratic and piecewise linear norms. The detailed exposition pre-
sented in the first part of Chapter 15 follows a similar line of argumentation
and shows that the state feedback solution to the finite time optimal con-
trol problem is a time-varying piecewise affine feedback control law, possibly
defined over non-convex regions.

Model Predictive Control for discrete-time PWA systems and their stabil-
ity and robustness properties have been studied in [60, 54, 28, 171, 168, 169].
Invariant sets computation for PWA systems has also been studied in [170, 4].

Observability and State Estimation

Observability of hybrid systems is a fundamental concept for understand-
ing if a state observer can be designed for a hybrid system and how well
it will perform. In [31] the authors show that observability properties (as
well as reachability properties) can be very complex and present a number
of counterexamples that rule out obvious conjectures about inheriting ob-
servability/controllability properties from the composing linear subsystems.
They also provide observability tests based on linear and mixed-integer linear
programming.

State estimation is the reconstruction of the value of unmeasurable state
variables based on output measurements. While state estimation is primarily
required for output-feedback control, it is also important in problems of mon-
itoring and fault detection [36, 16]. Observability properties of hybrid systems
were directly exploited for designing convergent state estimation schemes for
hybrid systems in [94].

Identification

Identification techniques for piecewise affine systems were recently devel-
oped [95, 228, 150, 34, 152, 258, 205], that allow one to derive models (or
parts of models) from input/output data.

Extensions to Event-driven and Stochastic Dynamics

The discrete-time methodologies described in this chapter were employed
in [68] to tackle event-based continuous-time hybrid systems with integral
continuous dynamics, called integral continuous-time hybrid automata (icHA).
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The hybrid dynamics is translated into an equivalent MLD form, where
continuous-time is an additional state variable and the index t counts events
rather than time steps. Extensions of DHA to discrete-time stochastic hybrid
dynamics was proposed in [29], where discrete-state transitions depend on
both deterministic and stochastic events.



Chapter 15

Optimal Control of Hybrid Systems

335



336 15 Optimal Control of Hybrid Systems

In this chapter we study the finite time, infinite time and receding horizon
optimal control problem for the class of hybrid systems presented in the
previous chapter. We establish the structure of the optimal control law and
derive algorithms for its computation. For finite time problems with linear
and quadratic objective functions we show that the time varying feedback
law is piecewise affine. We present several approaches for the computation of
the optimal control law.

15.1 Problem Formulation

Consider the PWA system (14.1) subject to hard input and state constraints

Ex(t) + Lu(t) ≤M (15.1)

for t ≥ 0, and rewrite its restriction over the set of states and inputs defined
by (15.1) as

x(t + 1) = Aix(t) + Biu(t) + f i if
[

x(t)
u(t)

]
∈ C̃i (15.2)

where {C̃i}s−1
i=0 is the new polyhedral partition of the sets of state+input

space Rn+m obtained by intersecting the sets Ci in (14.1) with the polyhe-
dron described by (15.1). In this chapter we will assume that the sets Ci are
polytopes.

Define the cost function

J0(x(0), U0) , p(xN ) +

N−1∑

k=0

q(xk, uk) (15.3)

where xk denotes the state vector at time k obtained by starting from the
state x0 = x(0) and applying to the system model

xk+1 = Aixk + Biuk + f i if [ xk
uk

] ∈ C̃i (15.4)

the input sequence U0 , [u′
0, . . . , u

′
N−1]

′.
If the 1-norm or ∞-norm is used in the cost function (15.3), then we set

p(xN ) = ‖PxN‖p and q(xk, uk) = ‖Qxk‖p + ‖Ruk‖p with p = 1 or p = ∞
and P , Q, R full column rank matrices. Cost (15.3) is rewritten as

J0(x(0), U0) , ‖PxN‖p +
N−1∑

k=0

‖Qxk‖p + ‖Ruk‖p (15.5)

If the squared euclidian norm is used in the cost function (15.3), then we
set p(xN ) = x′

NPxN and q(xk, uk) = x′
kQxk + u′

kRuk with P � 0, Q � 0
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and R ≻ 0. Cost (15.3) is rewritten as

J0(x(0), U0) , x′
NPxN +

N−1∑

k=0

x′
kQxk + u′

kRuk (15.6)

Consider the

Constrained Finite Time Optimal Control problem (CFTOC)

J∗
0 (x(0)) , min

U0

J0(x(0), U0) (15.7a)

subj. to





xk+1 = Aixk + Biuk + f i if [ xk
uk

] ∈ C̃i

xN ∈ Xf

x0 = x(0)
(15.7b)

where the column vector U0 , [u′
0, . . . , u

′
N−1]

′ ∈ RmcN × {0, 1}mℓN , is the
optimization vector, N is the time horizon and Xf is the terminal region.

In general, the optimal control problem (15.3)-(15.7) may not have a min-
imizer for some feasible x(0). This is caused by discontinuity of the PWA sys-
tem in the input space. We will assume, however, that a minimizer U0

∗(x(0))
exists for all feasible x(0). Also the optimizer function U∗

0 may not be uniquely
defined if the optimal set of problem (15.3)-(15.7) is not a singleton for some
x(0). In this case U∗

0 denotes one of the optimal solutions.
We will denote by Xk ⊆ Rnc×{0, 1}nℓ the set of states xk that are feasible

for (15.3)-(15.7):

Xk =





x ∈ Rnc × {0, 1}nℓ

∣∣∣∣∣∣∣∣

∃u ∈ Rmc × {0, 1}mℓ,
∃i ∈ {1, . . . , s}
[ x
u ] ∈ C̃i and

Aix + Biu + f i ∈ Xk+1





,

k = 0, . . . , N − 1,
XN = Xf .

(15.8)

The definition of Xi requires that for any initial state xi ∈ Xi there exists a
feasible sequence of inputs Ui , [u′

i, . . . , u
′
N−1] which keeps the state evolu-

tion in the feasible set X at future time instants k = i + 1, . . . , N − 1 and
forces xN into Xf at time N . The sets Xk for i = 0, . . . , N play an important
role in the the solution of the optimal control problem. They are indepen-
dent of the cost function and of the algorithm used to compute the solution
to problem (15.3)-(15.7). As in the case of linear systems (see Chapter 10.3)
there are two ways to rigourously define and compute the sets Xi: the batch
approach and the recursive approach. In this chapter we will not discuss the
details on the computation of Xi. Also, we will not discuss invariant and
reachable sets for hybrid systems. While the basic concepts are identical to



338 15 Optimal Control of Hybrid Systems

the one presented in Section 10.1 for linear systems, the discussion of efficient
algorithms requires a careful treatment which goes beyond the scope of this
book. The interested reader is referred to the work in [122, 112] for a detailed
discussion on reachable and invariant sets for hybrid systems.

In the following we need to distinguish between optimal control based on
the squared 2-norm and optimal control based on the 1-norm or ∞-norm.
Note that the results of this chapter also hold when the number of switches
is weighted in the cost function (15.3), if this is meaningful in a particular
situation.

In this chapter we will make use of the following definition. Consider sys-
tem (15.2) and recall that, in general, x = [ xc

xℓ
] where xc ∈ Rnc are the

continuous states and xℓ ∈ Rnℓ are the binary states and u ∈ Rmc ×{0, 1}mℓ

where uc ∈ Rmc are the continuous inputs and uℓ ∈ Rmℓ are the binary
inputs (Section 14.2.2). We will require the following assumption.

Assumption 15.1 For the discrete-time PWA system (15.2) is, the mapping
(xc(t), uc(t)) 7→ xc(t + 1) is continuous.

Assumption 15.1 requires that the PWA function that defines the update of
the continuous states is continuous on the boundaries of contiguous polyhe-
dral cells, and therefore allows one to work with the closure of the sets C̃i

without the need of introducing multi-valued state update equations. With
abuse of notation in the next sections C̃i will always denote the closure of C̃i.
Discontinuous PWA systems will be discussed in Section 15.7.

15.2 Properties of the State Feedback Solution, 2-Norm

Case

Theorem 15.1. Consider the optimal control problem (15.7) with cost
(15.6) and let Assumption 15.1 hold. Then, there exists a solution in
the form of a PWA state-feedback control law

u∗
k(x(k)) = F i

kx(k) + Gi
k if x(k) ∈ Ri

k, (15.9)

where Ri
k, i = 1, . . . , Nk is a partition of the set Xk of feasible states

x(k), and the closure R̄i
k of the sets Ri

k has the following form:

R̄i
k ,

{
x : x(k)′Li

k(j)x(k) + M i
k(j)x(k) ≤ N i

k(j) ,
j = 1, . . . , ni

k

}
, k = 0, . . . , N − 1,

(15.10)

and
x(k + 1) = Aix(k) + Biu∗

k(x(k)) + f i

if
[

x(k)
u∗

k(x(k))

]
∈ C̃i, i = {1, . . . , s}. (15.11)
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Proof: The piecewise linearity of the solution was first mentioned by
Sontag in [240]. In [184] Mayne sketched a proof. In the following we
will give the proof for u∗

0(x(0)), the same arguments can be repeated for
u∗

1(x(1)), . . . , u∗
N−1(x(N − 1)).

• Case 1: (ml = nl = 0) no binary inputs and states
Depending on the initial state x(0) and on the input sequence U = [u′

0,. . .,
u′

k], the state xk is either infeasible or it belongs to a certain polyhedron

C̃i, k = 0, . . . , N − 1. The number of all possible locations of the state

sequence x0, . . . , xN−1 is equal to sN . Denote by {vi}s
N

i=1 the set of all
possible switching sequences over the horizon N , and by vk

i the k-th
element of the sequence vi, i.e., vk

i = j if xk ∈ C̃j.
Fix a certain vi and constrain the state to switch according to the sequence
vi. Problem (15.3)-(15.7) becomes

J∗
vi

(x(0)) , min
{U0}

J0(U0, x(0)) (15.12a)

subj. to





xk+1 = Avk
i xk + Bvk

i uk + fvk
i

[ xk
uk

] ∈ C̃vk
i

k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0)

(15.12b)

Problem (15.12) is equivalent to a finite-time optimal control problem for
a linear time-varying system with time-varying constraints and can be
solved by using the approach described in Chapter 10. The first move u0

of its solution is the PPWA feedback control law

ui
0(x(0)) = F̃ i,jx(0) + G̃i,j , ∀x(0) ∈ T i,j , j = 1, . . . , N ri (15.13)

where Di =
⋃Nri

j=1 T i,j is a polyhedral partition of the convex set Di of

feasible states x(0) for problem (15.12). N ri is the number of regions of
the polyhedral partition of the solution and it is a function of the number
of constraints in problem (15.12). The upper index i in (15.13) denotes
that the input ui

0(x(0)) is optimal when the switching sequence vi is fixed.

The set X0 of all feasible states at time 0 is X0 =
⋃sN

i=1Di and in general
it is not convex. Indeed, as some initial states can be feasible for different
switching sequences, the sets Di, i = 1, . . . , sN , in general, can overlap.
The solution u∗

0(x(0)) to the original problem (15.3)-(15.7) can be com-
puted in the following way. For every polyhedron T i,j in (15.13),
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1. If T i,j ∩ T l,m = ∅ for all l 6= i, l = 1, . . . , sN , and for all m 6= j,
m = 1, . . . , N rl, then the switching sequence vi is the only feasible one
for all the states belonging to T i,j and therefore the optimal solution is
given by (15.13), i.e.

u∗
0(x(0)) = F̃ i,jx(0) + G̃i,j , ∀x ∈ T i,j . (15.14)

2. If T i,j intersects one or more polyhedra T l1,m1 ,T l2,m2 , . . ., the states
belonging to the intersection are feasible for more than one switching
sequence vi, vl1 , vl2 , . . . and therefore the corresponding value functions
J∗

vi
, J∗

vl1
,J∗

vl2
, . . . in (15.12a) have to be compared in order to compute

the optimal control law.
Consider the simple case when only two polyhedra overlap, i.e. T i,j ∩
T l,m , T (i,j),(l,m) 6= ∅. We will refer to T (i,j),(l,m) as a double feasibility
polyhedron. For all states belonging to T (i,j),(l,m) the optimal solution
is:

u∗
0(x(0)) =





F̃ i,jx(0) + G̃i,j , ∀x(0) ∈ T (i,j),(l,m) :
J∗

vi
(x(0)) < J∗

vl
(x(0))

F̃ l,mx(0) + G̃l,m, ∀x(0) ∈ T (i,j),(l,m) :
J∗

vi
(x(0)) > J∗

vl
(x(0)){

F̃ i,jx(0) + G̃i,j or

F̃ l,mx(0) + G̃l,m ∀x(0) ∈ T (i,j),(l,m) :

J∗
vi

(x(0)) = J∗
vl

(x(0))

(15.15)

Because J∗
vi

and J∗
vl

are quadratic functions of x(0) on T i,j and T l,m re-
spectively, we find the expression (15.10) of the control law domain. The
sets T i,j \ T l,m and T l,m \ T i,j are two single feasibility non-Euclidean
polyhedra which can be partitioned into a set of single feasibility poly-
hedra, and thus be described through (15.10) with Li

k = 0.

In order to conclude the proof, the general case of n intersecting poly-
hedra has to be discussed. We follow three main steps. Step 1: generate
one polyhedron of nth-ple feasibility and 2n − 2 polyhedra, generally non-
Euclidean and possibly empty and disconnected, of single, double, . . .,
(n− 1)th-ple feasibility. Step 2: the ith-ple feasibility non-Euclidean poly-
hedron is partitioned into several ith-ple feasibility polyhedra. Step 3: any
ith-ple feasibility polyhedron with i > 1 is further partitioned into at most
i subsets (15.10) where in each one of them a certain feasible value func-
tion is greater than all the others. The procedure is depicted in Figure 15.1
when n = 3.

• Case 2: binary inputs, mℓ 6= 0
The proof can be repeated in the presence of binary inputs, mℓ 6= 0. In
this case the switching sequences vi are given by all combinations of re-
gion indices and binary inputs , i.e., i = 1, . . . , (s ·mℓ)

N . The continuous
component of the optimal input is given by (15.14) or (15.15). Such an
optimal continuous component of the input has an associated optimal se-
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1

2

3

1,2,3

1,2

1,3

(a) Step 1

1

2

3

(b) Step 2 and Step 3

Fig. 15.1 Graphical illustration of the main steps for the proof of Theorem 15.1
when 3 polyhedra intersect. Step 1: the three intersecting polyhedra are partitioned
into: one polyhedron of triple feasibility (1,2,3), 2 polyhedra of double feasibility (1, 2)
and (1, 3), 3 polyhedra of single feasibility (1),(2),(3). The sets (1), (2) and (1,2) are
neither open nor closed polyhedra. Step 2: the sets (1), (2) and (1,2) are partitioned
into six polyhedra of single feasibility. Step 3: value functions are compared inside
the polyhedra of multiple feasibility.

quence vi, whose components provide the remaining binary components
of the optimal input.

• Case 3: binary states, nl 6= 0
The proof can be repeated in the presence of binary states by a simple
enumeration of all the possible nN

ℓ discrete state evolutions.

2

From the result of the theorem above one immediately concludes that the
value function J∗

0 is piecewise quadratic:

J∗
0 (x(0)) = x(0)′Hi

1x(0) + Hi
2x(0) + Hi

3 if x(0) ∈ Ri
0, (15.16)

The proof of Theorem 15.1 gives useful insights into the properties of the
sets Ri

k in (15.10). We will summarize them next.
Each set Ri

k has an associated multiplicity j which means that j switching
sequences are feasible for problem (15.3)-(15.7) starting from a state x(k) ∈
Ri

k. If j = 1, then Ri
k is a polyhedron. In general, if j > 1 the boundaries of

Ri
k can be described either by an affine function or by a quadratic function.

In the sequel boundaries which are described by quadratic functions but
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degenerate to hyperplanes or sets of hyperplanes will be considered affine
boundaries.

Quadratic boundaries arise from the comparison of value functions asso-
ciated with feasible switching sequences, thus a maximum of j − 1 quadratic
boundaries can be present in a j-ple feasible set. The affine boundaries can be
of three types. Type a: they are inherited from the original j-ple feasible non-
Euclidean polyhedron. In this case across such boundaries the multiplicity of
the feasibility changes. Type b: they are artificial cuts needed to describe
the original j-ple feasible non-Euclidean polyhedron as a set of j-ple feasible
polyhedra. Across type b boundaries the multiplicity of the feasibility does
not change. Type c: they arise from the comparison of quadratic value func-
tions which degenerate in an affine boundary.
In conclusion, we can state the following proposition

Proposition 15.1. The value function J∗
k

1. is a quadratic function of the states inside each Ri
k

2. is continuous on quadratic and affine boundaries of type b and c

3. may be discontinuous on affine boundaries of type a,

and the optimizer u∗
k

1. is an affine function of the states inside each Ri
k

2. is continuous across and unique on affine boundaries of type b

3. is non-unique on quadratic boundaries, except possibly at isolated points.
4. may be non-unique on affine boundaries of type c,
5. may be discontinuous across affine boundaries of type a.

Based on Proposition 15.1 above one can highlight the only source of
discontinuity of the value function: affine boundaries of type a. The following
corollary gives a useful insight on the class of possible value functions.

Corollary 15.1. J∗
0 is a lower-semicontinuous PWQ function on X0.

Proof: The proof follows from the result on the minimization of lower-
semicontinuous point-to-set maps in [43]. Below we give a simple proof with-
out introducing the notion of point-to-set maps.

Only points where a discontinuity occurs are relevant for the proof, i.e.,
states belonging to boundaries of type a. From Assumption 15.1 it follows
that the feasible switching sequences for a given state x(0) are all the feasible
switching sequences associated with any set Rj

0 whose closure R̄j
0 contains

x(0). Consider a state x(0) belonging to boundaries of type a and the proof
of Theorem 15.1. The only case of discontinuity can occur when (i) a j-ple
feasible set P1 intersects an i-ple feasible set P2 with i < j, (ii) there exists
a point x(0) ∈ P1, P2 and a neighborhood N (x(0)) with x, y ∈ N (x(0)),
x ∈ P1, x /∈ P2 and y ∈ P2, y /∈ P1. The proof follows from the previous
statements and the fact that J∗

0 (x(0)) is the minimum of all J∗
vi

(x(0)) for all
feasible switching sequences vi. 2
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The result of Corollary 15.1 will be used extensively in the next sections.
Even if value function and optimizer are discontinuous, one can work with

the closure
¯Rj
k of the original sets Rj

k without explicitly considering their

boundaries. In fact, if a given state x(0) belongs to several regions R̄1
0,. . . ,R̄p

0,
then the minimum value among the optimal values (15.16) associated with
each region R̄1

0, . . . , R̄p
0 allows us to identify the region of the set R1

0, . . . ,Rp
0

containing x(0).
Next we show some interesting properties of the optimal control law when

we restrict our attention to smaller classes of PWA systems.

Corollary 15.2. Assume that the PWA system (15.2) is continuous, and
that E = 0 in (15.1) and Xf = Rn in (15.7) (which means that there are

no state constraints, i.e., P̃ is unbounded in the x-space). Then, the value
function J∗

0 in (15.7) is continuous.

Proof: Problem (15.3)-(15.7) becomes a multi-parametric program with
only input constraints when the state at time k is expressed as a func-
tion of the state at time 0 and the input sequence u0, . . . , uk−1, i.e., xk =
fPWA((· · · (fPWA(x0, u0), u1), . . . , uk−2), uk−1). J0 in (15.3) will be a contin-
uous function of x0 and u0, . . . , uN−1 since it is the composition of continuous
functions. By assumptions the input constraints on u0, . . . , uN−1 are convex
and the resulting set is compact. The proof follows from the continuity of J
and Theorem 5.2.

2

Note that E = 0 is a sufficient condition for ensuring that constraints (15.1)
are convex in the optimization variables u0, . . . , un. In general, even for con-
tinuous PWA systems with state constraints it is difficult to find weak as-
sumptions ensuring the continuity of the value function J∗

0 . Ensuring the
continuity of the optimal control law u(k) = u∗

k(x(k)) is even more difficult.
A list of sufficient conditions for U∗

0 to be continuous can be found in [99].
In general, they require the convexity (or a relaxed form of it) of the cost
J0(U0, x(0)) in U0 for each x(0) and the convexity of the constraints in (15.7)
in U0 for each x(0). Such conditions are clearly very restrictive since the
cost and the constraints in problem (15.7) are a composition of quadratic
and linear functions, respectively, with the piecewise affine dynamics of the
system.

The next theorem provides a condition under which the solution u∗
k(x(k))

of the optimal control problem (15.3)-(15.7) is a PPWA state-feedback control
law.

Theorem 15.2. Assume that the optimizer U0
∗(x(0)) of (15.3)-(15.7) is

unique for all x(0). Then the solution to the optimal control problem (15.3)-
(15.7) is a PPWA state feedback control law of the form

u∗
k(x(k)) = F i

kx(k) + Gi
k if x(k) ∈ P i

k k = 0, . . . , N − 1, (15.17)
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where P i
k, i = 1, . . . , N r

k , is a polyhedral partition of the set Xk of feasible
states x(k).

Proof: : In Proposition 15.1 we concluded that the value function
J∗

0 (x(0)) is continuous on quadratic type boundaries. By hypothesis, the
optimizer u∗

0(x(0)) is unique. Theorem 15.1 implies that F̃ i,jx(0) + G̃i,j =
F̃ l,mx(0) + G̃l,m, ∀x(0) belonging to the quadratic boundary. This can occur
only if the quadratic boundary degenerates to a single feasible point or to
affine boundaries. The same arguments can be repeated for u∗

k(x(k)), k =
1, . . . , N − 1. 2

Remark 15.1. Theorem 15.2 relies on a rather strong uniqueness assumption.
Sometimes, problem (15.3)-(15.7) can be modified in order to obtain unique-
ness of the solution and use the result of Theorem 15.2 which excludes the
existence of non-convex ellipsoidal sets. It is reasonable to believe that there
are other conditions under which the state-feedback solution is PPWA with-
out claiming uniqueness.

Example 15.1. Consider the following simple system





x(t + 1) =





[
−1 2
2 −3

]
x(t) +

[
0
1

]
u(t) if x(t) ∈ C1 = {x : [0 1]x ≥ 0}

[
1 −2
1 1

]
x(t) +

[
1
0

]
u(t) if x(t) ∈ C2 = {x : [0 1]x < 0}

x(t) ∈ [−1,−0.5]× [1, 1]
u(t) ∈ [−1, 1]

(15.18)

and the optimal control problem (15.7) with cost (15.6), N = 2, Q =

[
1 1
1 15

]
,

R = 10, P = Q, Xf = X .
The possible switching sequences are v1 = {1, 1}, v2 = {1, 2}, v3 = {2, 1},

v4 = {2, 2}. The solution to problem (15.12) is depicted in Figure (15.2). In
Figure 15.3(a) the four solutions are intersected, the white region corresponds
to polyhedra of multiple feasibility. In Figure 15.3(b) we plot with different
colors the regions of the state-space partition where the switching sequences
v1 = {1, 1}, v2 = {1, 2}, v3 = {2, 1}, v4 = {2, 2} are optimal.

15.3 Properties of the State Feedback Solution,

1, ∞-Norm Case

The results of the previous section can be extended to piecewise linear cost
functions, i.e., cost functions based on the 1-norm or the ∞-norm.
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(a) States-space partition cor-
responding to the solution
to problem (15.7) with cost
(15.6) for v1 = {1, 1}
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(b) States-space partition cor-
responding to the solution
to problem (15.7) with cost
(15.6) for v2 = {1, 2}
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(c) States-space partition cor-
responding to the solution
to problem (15.7) with cost
(15.6) for v2 = {2, 1}
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(d) States-space partition cor-
responding to the solution
to problem (15.7) with cost
(15.6) for v4 = {2, 2}

Fig. 15.2 First step for the solution of Example 15.1. Problem (15.12) with cost
(15.6) is solved for different vi, i = 1, . . . , 4

Theorem 15.3. Consider the optimal control problem (15.7) with cost (15.5),
p = 1, ∞ and let Assumption 15.1 hold. Then there exists a solution in the
form of a PPWA state-feedback control law

u∗
k(x(k)) = F i

kx(k) + Gi
k if x(k) ∈ P i

k, (15.19)

where P i
k, i = 1, . . . , N r

k is a polyhedral partition of the set Xk of feasible
states x(k).

Proof: The proof is similar to the proof of Theorem 15.1. Fix a certain
switching sequence vi, consider the problem (15.3)-(15.7) and constrain the
state to switch according to the sequence vi to obtain problem (15.12). Prob-
lem (15.12) can be viewed as a finite time optimal control problem with a
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(a) Feasibility domain corresponding to
the solution of Example 15.1 obtained
by joining the solutions plotted in Fig-
ure 15.2. The white region corresponds
to polyhedra of multiple feasibility.

x1

x
2

v1

v2 v2

v4 v3

-1 0 1
-0.5

0

0.5

1

(b) Regions of the state-space partition
where the switching sequences v1 =
{1, 1}, v2 = {1, 2}, v3 = {2, 1}, v4 =
{2, 2} are optimal.

Fig. 15.3 State-space partition corresponding to the optimal control law of Exam-
ple 15.1

performance index based on 1-norm or ∞-norm for a linear time varying
system with time varying constraints and can be solved by using the multi-
parametric linear program as described in Chapter 10.5. Its solution is a
PPWA feedback control law

ui
0(x(0)) = F̃ i,jx(0) + G̃i,j , ∀x ∈ T i,j , j = 1, . . . , Nri, (15.20)

and the value function J∗
vi

is piecewise affine on polyhedra and convex. The
rest of the proof follows the proof of Theorem 15.1. Note that in this case
the value functions to be compared are piecewise affine and not piecewise
quadratic. 2

15.4 Computation of the Optimal Control Input via

Mixed Integer Programming

In the previous section the properties enjoyed by the solution to hybrid opti-
mal control problems were investigated. Despite the fact that the proofs are
constructive (as shown in the figures), they are based on the enumeration
of all the possible switching sequences of the hybrid system, the number of
which grows exponentially with the time horizon. Although the computation
is performed off-line (the on-line complexity is the one associated with the
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evaluation of the PWA control law (15.17)), more efficient methods than enu-
meration are desirable. Here we show that the MLD framework can be used to
avoid the complete enumeration. In fact, when the model of the system is an
MLD model and the performance index is quadratic, the optimization prob-
lem can be cast as a Mixed-Integer Quadratic Program (MIQP). Similarly,
1-norm and ∞-norm performance indices lead to Mixed-Integer Linear Pro-
grams (MILPs) problems. In the following we detail the translation of prob-
lem (15.7) with cost (15.5) or (15.6) into a mixed integer linear or quadratic
program, respectively, for which efficient branch and bound algorithms exist.

Consider the equivalent MLD representation (14.25) of the PWA sys-
tem (15.2). Problem (15.7) is rewritten as:

J∗
0 (x(0)) = minU0 J0(x(0), U0) (15.21a)

subj. to





xk+1 = Axk + B1uk + B2δk + B3zk

y(t) = Cx(t) + D1u(t) + D2δ(t) + D3z(t) + D5

E2δk + E3zk ≤ E1uk + E4xk + E5

xN ∈ Xf

x0 = x(0)

(15.21b)

Note that the cost function (15.21a) is of the form

J0(x(0), U0) , ‖PxN‖p+

N−1∑

k=0

‖Qxk‖p+‖Ruk‖p+‖Qδδk‖p+‖Qzzk‖p (15.22)

when p = 1 or p =∞ or

J0(x(0), U0) , x′
NPxN +

N−1∑

k=0

x′
kQxk + u′

kRuk + δ′kQδδk + z′kQzzk (15.23)

when p=2.
The optimal control problem (15.21) with the cost (15.22) can be for-

mulated as a Mixed Integer Linear Program (MILP). The optimal control
problem (15.21) with the cost (15.23) can be formulated as a Mixed Integer
Quadratic Program (MIQP). The compact form for both cases is

min
ε

ε′H1ε + ε′H2x(0) + x(0)′H3x(0) + c′1ε + c′2x(0) + c

subj. to Gε ≤W + Sx(0)

(15.24)

where H1, H2, H3, c1, c2, G, W , S are matrices of suitable dimensions, ε =
[ε′c, ε

′
d] where εc, εd represent continuous and discrete variables, respectively

and H1, H2, H3, are null matrices if problem (15.24) is an MILP.
The translation of (15.21) with cost (15.23) into (15.24) is simply obtained

by substituting the state update equation
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xk = Akx0 +

k−1∑

j=0

Aj(B1uk−1−j + B2δk−1−j + B3zk−1−j) (15.25)

The optimization vector ε in (15.24) is ε = {u0, . . . , uN−1, δ0, . . . , δN−1, z0, . . . , zN−1}.
The translation of (15.21) with cost (15.22) into (15.24) requires the in-

troductions of slack variables as shown in Section 10.5 for the case of linear
systems. In particular, for p = ∞, Qz = 0 and Qδ = 0, the sum of the
components of any vector {εu

0 , . . . , εu
N−1, ε

x
0 , . . . , εx

N} that satisfies

−1mεu
k ≤ Ruk, k = 0, 1, . . . , N − 1

−1mεu
k ≤ −Ruk, k = 0, 1, . . . , N − 1

−1nεx
k ≤ Qxk, k = 0, 1, . . . , N − 1

−1nεx
k ≤ −Qxk, k = 0, 1, . . . , N − 1

−1nεx
N ≤ PxN ,

−1nεx
N ≤ PxN ,

(15.26)

represents an upper bound on J∗
0 (x(0)), where 1k is a column vector of ones

of length k, and where x(k) is expressed as in (15.25). Similarly to what was
shown in [71], it is easy to prove that the vector ε , {εu

0 , . . . , εu
N−1, ε

x
0 , . . . , εx

N , u(0), . . . , u(N−
1)} that satisfies equations (15.26) and simultaneously minimizes

J(ε) = εu
0 + . . . + εu

N−1 + εx
0 + . . . + εx

N (15.27)

also solves the original problem, i.e., the same optimum J∗
0 (x(0)) is achieved.

Therefore, problem (15.21) with cost (15.22) can be reformulated as the fol-
lowing MILP problem

min
ε

J(ε)

subj. to −1mεu
k ≤ ±Ruk, k = 0, 1, . . . , N − 1

−1nεx
k ≤ ±Q(Akx0 +

∑k−1
j=0 Aj(B1uk−1−j+

B2δk−1−j + B3zk−1−j)) k = 0, . . . , N − 1

−1nεx
N ≤ ±P (ANx0 +

∑N−1
j=0 Aj(B1uk−1−j+

B2δk−1−j + B3zk−1−j))
xk+1 = Axk + B1uk + B2δk + B3zk, k ≥ 0
E2δk + E3zk ≤ E1uk + E4xk + E5, k ≥ 0

xN ∈ Xf

x0 = x(0)

(15.28)

where the variable x(0) in (15.28) appears only in the constraints as a pa-
rameter vector.

Given a value of the initial state x(0), the MIQP (15.24) or the MILP (15.28)
can be solved to get the optimizer ε∗(x(0)) and therefore the optimal input
U∗

0 (0). In the next Section 15.5 we will show how multiparametric program-
ming can be used to efficiently compute the piecewise affine state feedback
optimal control law (15.9) or (15.19).
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Example 15.2. Consider the problem of steering in three steps the simple
piecewise affine system presented in Example 14.1 to a small region around
the origin. The system state update equations are





x(t + 1) =





0.4

[
1 −
√

3√
3 1

]
x(t) +

[
0
1

]
u(t) if

[
1 0
]
x(t) ≥ 0

0.4

[
1
√

3

−
√

3 1

]
x(t) +

[
0
1

]
u(t) if

[
1 0
]
x(t) ≤ −ǫ

y(t) =
[
0 1
]
x(t)

(15.29)

subject to the constraints

x(t) ∈ [−5, 5]× [−5, 5]
u(t) ∈ [−1, 1]

(15.30)

The MLD representation of system (15.29)-(15.30) was reported in Exam-
ple 14.7.

The finite time constrained optimal control problem (15.7) with cost
(15.5) with p = ∞, N = 3, P = Q = [ 1 0

0 1 ], R = 1, and Xf =
[−0.01, 0.01]×[−0.01, 0.01], can be solved by considering the optimal control
problem (15.21) with cost (15.22) for the equivalent MLD representation and
solving the associated MILP problem (15.24).

The resulting MILP has 27 variables (|ε| = 27) which are x ∈ R2, δ ∈
{0, 1}, z ∈ R2, u ∈ R, y ∈ R over 3 steps plus the real-valued slack variables
εu
0 , εu

1 , εu
2 and εx

1 , εx
2 , εx

3 (note that εx
0 is not needed). The number of mixed-

integer equality constraints is 9 resulting from the 3 equality constraints
of the MLD systems over 3 steps. The number of mixed-integer inequality
constraints is 110.

The finite time constrained optimal control problem (15.7) with cost
(15.6), N = 3, P = Q = [ 1 0

0 1 ], R = 1, and Xf = [−0.01 0.01]× [−0.01 0.01],
can be solved by considering the optimal control problem (15.21) with cost
(15.23) for the equivalent MLD representation and solving the associated
MIQP problem (15.24).

The resulting MIQP has 21 variables (|ε| = 21) which are x ∈ R2, δ ∈
{0, 1}, z ∈ R2, u ∈ R, y ∈ R over 3 steps. The number of mixed-integer
equality constraints is 9 resulting from the 3 equality constraints of the MLD
systems over 3 steps. The number of mixed-integer inequality constraints is
74.

15.5 State Feedback Solution via Batch Approach

Multiparametric programming [106, 91, 39, 56] can be used to efficiently
compute the PWA form of the optimal state feedback control law u∗(x(k)).
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By generalizing the results for linear systems of previous chapters to hybrid
systems, the state vector x(0), which appears in the objective function and
in the linear part of the right-hand-side of the constraints (15.24), can be
considered as a vector of parameters. Then, for performance indices based
on the ∞-norm or 1-norm, the optimization problem can be treated as a
multiparametric MILP (mp-MILP), while for performance indices based on
the 2-norm, the optimization problem can be treated as a multiparametric
MIQP (mp-MIQP). Solving an mp-MILP (mp-MIQP) amounts to expressing
the solution of the MILP (MIQP) (15.24) as a function of the parameters x(0)
.

In Section 6.4.1 we have presented an algorithm for solving mp-MILP
problems, while, to the authors’ knowledge, there does not exist an efficient
method for solving general mp-MIQPs. In Section 15.6 we will present an
algorithm that efficiently solves the specific mp-MIQPs derived from optimal
control problems for discrete-time hybrid systems.

15.6 State Feedback Solution via Recursive Approach

In this section we propose an efficient algorithm for computing the solution
to the finite time optimal control problem for discrete-time linear hybrid sys-
tems. It is based on a dynamic programming recursion and a multiparametric
linear or quadratic programming solver. The approach represents an alter-
native to the mixed-integer parametric approach presented in the previous
section.

The PWA solution (15.9) will be computed proceeding backwards in time
using two tools: a linear or quadratic multi-parametric programming solver
(depending on the cost function used) and a special technique to store the
solution which will be illustrated in the next sections. The algorithm will be
presented for optimal control based on a quadratic performance criterion. Its
extension to optimal control based on linear performance criteria is straight-
forward.

15.6.1 Preliminaries and Basic Steps

Consider the PWA map ζ defined as

ζ : x ∈ Ri 7→ Fix + Gi for i = 1, . . . , NR, (15.31)

where Ri, i = 1, . . . , NR are subsets of the x−space. Note that if there exist
l, m ∈ {1, . . . , NR} such that for x ∈ Rl ∩ Rm, Flx + Gl 6= Fmx + Gm the
map ζ (15.31) is not single valued.
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Definition 15.1. Given a PWA map (15.31) we define fPWA(x) = ζo(x) as
the ordered region single-valued function associated with (15.31) when

ζo(x) = Fjx + Gj | x ∈ Rj and ∀i < j : x /∈ Ri,
j ∈ {1, . . . , NR},

and write it in the following form

ζo(x) =

y

F1x + G1 if x ∈ P1

...
FNRx + GNR if x ∈ PNR .

Note that given a PWA map (15.31) the corresponding ordered region single-
valued function ζo changes if the order used to store the regions Ri and
the corresponding affine gains change. For illustration purposes consider the
example depicted in Figure 15.4, where x ∈ R, NR = 2, F1 = 0, G1 = 0,
R1 = [−2, 1], F2 = 1, G2 = 0, R2 = [0, 2].

In the following, we assume that the sets Rk
i in the optimal solution (15.9)

can overlap. When we refer to the PWA function u∗
k(x(k)) in (15.9) we will

implicitly mean the ordered region single-valued function associated with the
map (15.9).

Example 15.3. Let J∗
1 : P1 → R and J∗

2 : P2 → R be two quadratic functions,
J∗

1 (x) , x′L1x + M1x + N1 and J∗
2 (x) , x′L2x + M2x + N2, where P1

and P2 are convex polyhedra and J∗
i (x) = +∞ if x /∈ Pi, i ∈ {1, 2}. Let

u∗
1 : P1 → Rm, u∗

2 : P2 → Rm be vector functions. Let P1∩P2 , P3 6= ∅ and
define

J∗(x) , min{J∗
1 (x), J∗

2 (x)} (15.32)

u∗(x) ,

{
u∗

1(x) if J∗
1 (x) ≤ J∗

2 (x)
u∗

2(x) if J∗
1 (x) ≥ J∗

2 (x)
(15.33)

where u∗(x) can be a set valued function. Let L3 = L2−L1, M3 = M2−M1,
N3 = N2 −N1. Then, corresponding to the three following cases

(i) J∗
1 (x) ≤ J∗

2 (x) ∀x ∈ P3

(ii) J∗
1 (x) ≥ J∗

2 (x) ∀x ∈ P3

(iii) ∃x1, x2 ∈ P3|J∗
1 (x1) < J∗

2 (x1) and J∗
1 (x2) > J∗

2 (x2)

the expressions (15.32) and a real-valued function that can be extracted
from (15.33) can be written equivalently as:

(i)

J∗(x) =

y
J∗

1 (x) if x ∈ P1

J∗
2 (x) if x ∈ P2

(15.34)

u∗(x) =

y
u∗

1(x) if x ∈ P1

u∗
2(x) if x ∈ P2

(15.35)
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ζ(x)

(a) Multi valued PWA map ζ

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2
ζ12(x) =

y
F1x + G1 if x ∈ R1
F2x + G2 if x ∈ R2

(b) Ordered region single val-
ued function ζ12

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2
ζ21(x) =

y
F2x + G2 if x ∈ R2
F1x + G1 if x ∈ R1

(c) Ordered region single val-
ued function ζ21

Fig. 15.4 Illustration of the ordered region single valued function.

(ii) as in (15.34) and (15.35) by switching the indices 1 and 2
(iii)

J∗(x) =

y

min{J∗
1 (x), J∗

2 (x)} if x ∈ P3

J∗
1 (x) if x ∈ P1

J∗
2 (x) if x ∈ P2

(15.36)

u∗(x) =

y

u∗
1(x) if x ∈ P3

⋂{x | x′L3x + M3x + N3 ≥ 0}
u∗

2(x) if x ∈ P3

⋂{x | x′L3x + M3x + N3 ≤ 0}
u∗

1(x) if x ∈ P1

u∗
2(x) if x ∈ P2

(15.37)

where (15.34), (15.35), (15.36), and (15.37) have to be considered as PWA
and PPWQ functions in the ordered region sense.

Example 15.3 shows how to

• avoid the storage of the intersections of two polyhedra in case (i) and (ii)
• avoid the storage of possibly non convex regions P1 \ P3 and P2 \ P3
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• work with multiple quadratic functions instead of quadratic functions de-
fined over non-convex and non-polyhedral regions.

The three points listed above will be the three basic ingredients for storing
and simplifying the optimal control law (15.9). Next we will show how to
compute it.

Remark 15.2. In Example 15.3 the description (15.36)-(15.37) of Case (iii)
can always be used but the on-line evaluation of the control u∗(x) is rather
involved requiring a series of set membership and comparison evaluations. To
assess if the simpler description of u∗(x) of Case (i) or Case (ii) could be used
instead, one needs to solve indefinite quadratic programs of the form

minx x′L3x + M3x + N3

subj. to x ∈ P3
(15.38)

which are nontrivial, in general.

15.6.2 Multiparametric Programming with Multiple Quadratic
Functions

Consider the multi-parametric program

J∗(x) , minu l(x, u) + q(f(x, u))
s.t. f(x, u) ∈ P ,

(15.39)

where P ⊆ Rn is a compact set, f : Rn × Rm → Rn, q : P → R, and
l : Rn × Rm → R is a convex quadratic function of x and u. We aim at
determining the region X of variables x such that the program (15.39) is
feasible and the optimum J∗(x) is finite, and at finding the expression u∗(x)
of (one of) the optimizer(s). We point out that the constraint f(x, u) ∈ P
implies a constraint on u as a function of x since u can assume only values
where f(x, u) is defined.

Next we show how to solve several forms of problem (15.39).

Lemma 15.1 (one to one problem). Problem (15.39) where f is linear, q
is quadratic and strictly convex, and P is a polyhedron can be solved by one
mp-QP.

Proof: See Chapter 6.3.1.

Lemma 15.2 (one to one problem of multiplicity d). Problem (15.39)
where f is linear, q is a multiple quadratic function of multiplicity d and P
is a polyhedron can be solved by d mp-QP’s.

Proof: The multi-parametric program to be solved is
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J∗(x) = minu {l(x, u) + min{q1(f(x, u)), . . . , qd(f(x, u))}}
subj. to f(x, u) ∈ P (15.40)

and it is equivalent to

J∗(x) = min





minu l(x, u) + q1(f(x, u)),
subj. to f(x, u) ∈ P ,
...,
minu l(x, u) + qd(f(x, u))}
subj. to f(x, u) ∈ P





. (15.41)

The ith sub-problems in (15.41)

J∗
i (x) , min

u
l(x, u) + qi(f(x, u)) (15.42)

subj. to f(x, u) ∈ P (15.43)

is a one to one problem and therefore it is solvable by an mp-QP. Let the
solution of the i-th mp-QPs be

ui(x) = F̃ i,jx + G̃i,j , ∀x ∈ T i,j , j = 1, . . . , Nri, (15.44)

where T i =
⋃Nri

j=1 T i,j is a polyhedral partition of the convex set T i of feasible

x for the ith sub-problem and N ri is the corresponding number of polyhedral
regions. The feasible set X satisfies X = T 1 = . . . = T d since the constraints
of the d sub-problems are identical.

The solution u∗(x) to the original problem (15.40) is obtained by com-
paring and storing the solution of d mp-QP subproblems (15.42)-(15.43) as
explained in Example 15.3. Consider the case d = 2, and consider the inter-
section of the polyhedra T 1,i and T 2,l for i = 1, . . . , Nr1, l = 1, . . . , Nr2. For
all T 1,i ∩ T 2,l , T (1,i),(2,l) 6= ∅ the optimal solution is stored in an ordered
way as described in Example 15.3, while paying attention to the fact that
a region could be already stored. Moreover, when storing a new polyhedron
with the corresponding value function and optimizer, the relative order of
the regions already stored must not be changed. The result of this Intersect
and Compare procedure is

u∗(x) = F ix + Gi if x ∈ Ri,

Ri , {x : x′Li(j)x + M i(j)x ≤ N i(j), j = 1, . . . , ni}, (15.45)

where R =
⋃NR

j=1Rj is a polyhedron and the value function

J∗(x) = J̃∗
j (x) if x ∈ Dj , j = 1, . . . , ND, (15.46)

where J̃∗
j (x) are multiple quadratic functions defined over the convex poly-

hedra Dj . The polyhedron Dj can contain several regions Ri or can coincide
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with one of them. Note that (15.45) and (15.46) have to be considered as
PWA and PPWQ functions in the ordered region sense.

If d > 2 then the value function in (15.46) is intersected with the solution
of the third mp-QP sub-problem and the procedure is iterated by making
sure not to change the relative order of the polyhedra and corresponding
gain of the solution constructed in the previous steps. The solution will still
have the same form (15.45)– (15.46). 2

Lemma 15.3 (one to r problem). Problem (15.39) where f is linear, q
is a lower-semicontinuous PPWQ function defined over r polyhedral regions
and strictly convex on each polyhedron, and P is a polyhedron, can be solved
by r mp-QP’s.

Proof: Let q(x) , qi if x ∈ Pi the PWQ function where the closures P̄i

of Pi are polyhedra and qi strictly convex quadratic functions. The multi-
parametric program to solve is

J∗(x) = min





minu l(x, u) + q1(f(x, u)),
subj. to f(x, u) ∈ P̄1

f(x, u) ∈ P
...,
minu l(x, u) + qr(f(x, u))}
subj. to f(x, u) ∈ P̄r

f(x, u) ∈ P





. (15.47)

The proof follows the lines to the proof of the previous theorem with the
exception that the constraints of the i-th mp-QP subproblem differ from the
j-th mp-QP subproblem, i 6= j.

The lower-semicontinuity assumption on q(x) allows one to use the clo-
sure of the sets Pi in (15.47).The cost function in problem (15.39) is lower-
semicontinuous since it is a composition of a lower-semicontinuous func-
tion and a continuous function. Then, since the domain is compact, prob-
lem (15.47) admits a minimum. Therefore for a given x, there exists one
mp-QP in problem (15.47) which yields the optimal solution. The procedure
based on solving mp-QPs and storing the results as in Example 15.3 will be

the same as in Lemma 15.2 but the domain R =
⋃NR

j=1Rj of the solution can
be a non-Euclidean polyhedron. 2

If f is PPWA defined over s regions then we have a s to X problem where
X can belong to any of the problems listed above. In particular, we have an
s to r problem of multiplicity d if f is PPWA and defined over s regions and
q is a multiple PPWQ function of multiplicity d, defined over r polyhedral
regions. The following lemma can be proven along the lines of the proofs
given before.

Lemma 15.4. Problem (15.39) where f is linear and q is a lower-semicontinuous
PPWQ function of multiplicity d, defined over r polyhedral regions and
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strictly convex on each polyhedron, is a one to r problem of multiplicity d
and can be solved by r · d mp-QP’s.
An s to r problem of multiplicity d can be decomposed into s one to r prob-
lems of multiplicity d. An s to one problem can be decomposed into s one to
one problems.

15.6.3 Algorithmic Solution of the Bellman Equations

In the following we will substitute the PWA system equations (15.2) with the
shorter form

x(k + 1) = f̃PWA(x(k), u(k)) (15.48)

where f̃PWA : C̃ → Rn and f̃PWA(x, u) = Aix + Biu + f i if [ x
u ] ∈ C̃i, i =

1, . . . , s, and
{
C̃i
}

is a polyhedral partition of C̃.
Consider the dynamic programming formulation of the CFTOC prob-

lem (15.6)-(15.7),

J∗
j (x(j)) , minuj x′

jQxj + u′
jRuj + J∗

j+1(f̃PWA(x(j), uj))

(15.49)

subj. to f̃PWA(x(j), uj) ∈ Xj+1 (15.50)

for j = N − 1, . . . , 0, with terminal conditions

XN = Xf (15.51)

J∗
N (x) = x′Px, (15.52)

where Xj is the set of all states x(j) for which problem (15.49)–(15.50) is
feasible:

Xj = {x ∈ Rn| ∃u, f̃PWA(x, u) ∈ Xj+1}. (15.53)

Equations (15.49)-(15.53) are the discrete-time version of the well known
Hamilton-Jacobi-Bellman equations for continuous-time optimal control prob-
lems.

Assume for the moment that there are no binary inputs and binary states,
mℓ = nℓ = 0. The Bellman equations (15.49)–(15.52) can be solved backwards
in time by using a multi-parametric quadratic programming solver and the
results of the previous section.

Consider the first step of the dynamic program (15.49)–(15.52)

J∗
N−1(xN−1) , min{uN−1} x′

N−1QxN−1 + u′
N−1RuN−1 + J∗

N (f̃PWA(xN−1, uN−1))

(15.54)

subj. to f̃PWA(xN−1, uN−1) ∈ Xf . (15.55)
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The cost to go function J∗
N (x) in (15.54) is quadratic, the terminal region Xf

is a polyhedron and the constraints are piecewise affine. Problem (15.54)–
(15.55) is an s to one problem that can be solved by solving s mp-QPs From
the second step j = N − 2 to the last one j = 0 the cost to go function
J∗

j+1(x) is a lower-semicontinuous PPWQ with a certain multiplicity dj+1,
the terminal region Xj+1 is a polyhedron (in general non-Euclidean) and the
constraints are piecewise affine. Therefore, problem (15.49)–(15.52) is an s to
N r

j+1 problem with multiplicity dj+1 (where N r
j+1 is the number of polyhedra

of the cost to go function J∗
j+1), that can be solved by solving sN r

j+1dj+1 mp-
QPs (Lemma 15.4). The resulting optimal solution will have the form (15.9)
considered in the ordered region sense.

In the presence of binary inputs the procedure can be repeated, with the
difference that all the possible combinations of binary inputs must be enu-
merated. Therefore a one to one problem becomes a 2mℓ to one problem and
so on. In the presence of binary states the procedure can be repeated either
by enumerating them all or by solving a dynamic programming algorithm at
time step k from a relaxed state space to the set of binary states feasible at
time k + 1.

Next we summarize the main steps of the dynamic programming algo-
rithm discussed in this section. We use boldface characters to denote sets
of polyhedra, i.e., R := {Ri}i=1,...,|R|, where Ri is a polyhedron and |R| is
the cardinality of the set R. Furthermore, when we say SOLVE an mp-QP
we mean to compute and store the triplet Sk,i,j of expressions for the value
function, the optimizer, and the polyhedral partition of the feasible space.
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Algorithm 15.5

INPUT CFTOC problem (15.3)−−(15.7)
OUTPUT Solution (15.9) in the ordered region sense .

LET RN = {Xf}
LET J∗

N,1(x) := x′Px

FOR k = N − 1, . . . , 1,
FOR i = 1, . . . , |Rk+1|,

FOR j = 1, . . . , s,
LET Sk,i,j = {}
SOLVE the mp−QP

Sk,i,j ← minuk
x′

kQxk + u′
kRuk + J∗

k+1,i(Ajxk + Bjuk + fj)

subj. to

{
Ajxk + Bjuk + fj ∈ Rk+1,i

[ xk
uk

] ∈ C̃j.

END

END

LET Rk = {Rk,i,j,l}i,j,l
. Denote by Rk,h its

elements , and by J∗
k,h and u∗

k,h(x) the associated

costs and optimizers , with h ∈ {1, . . . , |Rk|}

KEEP only triplets (J∗
k,h(x), u∗

k,h(x), Rk,h)

for which

∃x ∈ Rk,h : x /∈ Rk,d, ∀d 6= h OR

∃x ∈ Rk,h : J∗
k,h(x) < J∗

k,d(x), ∀d 6= h

CREATE multiplicity information and additional

regions for an ordered region solution as

explained in Example 15.3
END. �

In Algorithm 15.5, the structure Sk,i,j stores the matrices defining quadratic
function J∗

k,i,j,l(·), affine function u∗
k,i,j,l(·), and polyhedra Rk,i,j,l, for all l:

Sk,i,j =
⋃

l

{(
J∗

k,i,j,l(x), u∗
k,i,j,l(x), Rk,i,j,l

)}
. (15.56)

where the indices in (15.56) have the following meaning: k is the time step,
i indexes the piece of the “cost-to-go” function that the DP algorithm is
considering, j indexes the piece of the PWA dynamics the DP algorithm
is considering, and l indexes the polyhedron in the mp-QP solution of the
(k, i, j)th mp-QP problem.

The “KEEP only triplets” Step of Algorithm 15.5 aims at discarding re-
gions Rk,h that are completely covered by some other regions that have lower
cost. Obviously, if there are some parts of the region Rk,h that are not cov-
ered at all by other regions (first condition) we need to keep them. Note that
comparing the cost functions is, in general, non-convex optimization problem.
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One might consider solving the problem exactly, but since algorithm works
even if some removable regions are kept, we usually formulate LMI relaxation
of the problem at hand.

The output of Algorithm 15.5 is the state-feedback control law (15.9) con-
sidered in the ordered region sense. The online implementation of the control
law requires simply the evaluation of the PWA controller (15.9) in the ordered
region sense.

15.6.4 Examples

Example 15.4. Consider the control problem of steering the piecewise affine
system (15.29) to a small region around the origin. The constraints and cost
function of Example (15.2) are used. The state-feedback solution u∗

0(x(0)) was
determined by using the approach presented in the previous section. When
the infinity norm is used in the cost function, the feasible state-space X0 at
time 0 is divided into 84 polyhedral regions and it is depicted in Fig. 15.5(a).
When the squared Euclidean norm is used in the cost function, the feasible
state-space X0 at time 0 is divided into 92 polyhedral regions and is depicted
in Fig. 15.5(b).

−5 0 5
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2

(a) Partition of the feasible state-
space X0 when the infinity norm
is used in the cost function
(Nr

3 = 84)

−5 0 5
−5

0

5

 x
1

 x
2

(b) Partition of the feasible state-
space X0 when the squared Eu-
clidian norm is used in the cost
function (Nr

3 = 92)

Fig. 15.5 Example 15.4: state space control partition for u∗
0(x(0))

Note that as explained in Section 15.6.2 for the case of the squared Eu-
clidian norm, the optimal control law is stored in a special data structure
where:

1. The ordering of the regions is important.
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2. The polyhedra can overlap.
3. The polyhedra can have an associated value function of multiplicity d > 1.

Thus, d quadratic functions have to be compared on-line in order to
compute the optimal control action.

Example 15.5. Consider the hybrid spring-mass system described in Exam-
ple 14.2

x(t+1) =





[
0.90 0.02
−0.02 −0.00

]
x(t) + [ 0.10

0.02 ] u1(t) +
[−0.01
−0.02

]
if x1(t) ≤ 1, u2(t) ≤ 0.5

[
0.90 0.02
−0.06 −0.00

]
x(t) + [ 0.10

0.02 ] u1(t) +
[−0.07
−0.15

]
if x1(t) ≥ 1 + ǫ, u2(t) ≤ 0.5

[
0.90 0.38
−0.38 0.52

]
x(t) + [ 0.10

0.38 ] u1(t) +
[−0.10
−0.38

]
if x1(t) ≤ 1, u2(t) ≥ 0.5

[
0.90 0.35
−1.04 0.35

]
x(t) + [ 0.10

0.35 ] u1(t) +
[−0.75
−2.60

]
if x(t) ≥ 1 + ǫ, u2(t) ≥ 0.5

(15.57)
subject to the constraints

x(t) ∈ [−5, 5]× [−5, 5]
u(t) ∈ [−1, 1]

(15.58)

We solve the finite time constrained optimal control problem (15.7) with cost
(15.6) with N = 3, P = Q = [ 1 0

0 1 ], R = [ 0.2 0
0 1 ]. The state-feedback solution

was determined by using the approach presented in the previous section in
two cases: without terminal constraint (Figure 15.6(a)) and with terminal
constraint Xf = [−0.01 0.01]× [−0.01 0.01] (Figure 15.6(b)).
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(a) Partition with no terminal
constraint (Nr

3 = 183)
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(b) Partition with terminal con-
straint (Nr

3 = 181)

Fig. 15.6 Example 15.5: state space optimal control partition
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15.7 Discontinuous PWA systems

Without Assumption 15.1 the optimal control problem (15.3)-(15.7) may be
feasible but may not admit an optimizer for some x(0) (the problem in this
case would be to find an infimum rather than the minimum).

Under the assumption that the optimizer exists for all states x(k), the
approach explained in the previous sections can be applied to discontinuous
systems by considering three elements. First, the PWA system (15.2) has to be
defined on each polyhedron of its domain and all its lower dimensional facets.
Secondly, dynamic programming has to be performed “from” and “to” any
lower dimensional facet of each polyhedron of the PWA domain. Finally, value
functions are not lower-semicontinuous, which implies that Lemma 15.3 can-
not by used. Therefore, when considering the closure of polyhedral domains
in multi-parametric programming (15.47), a post-processing is necessary in
order to remove multi-parametric optimal solutions which do not belong to
the original set but only to its closure. The tedious details of the dynamic pro-
gramming algorithm for discontinuous PWA systems are not included here
but can be immediately extracted from the results of the previous sections.

In practice, the approach just described for discontinuous PWA systems
can easily be numerically prohibitive. The simplest approach from a practical
point of view is to introduce gaps between the boundaries of any two polyhe-
dra belonging to the PWA domain (or, equivalently, to shrink by a quantity ε
the size of every polyhedron of the original PWA system). This way, one deals
with PWA systems defined over a disconnected union of closed polyhedra.
By doing so, one can use the approach discussed in this chapter for continu-
ous PWA systems. However, the optimal controller will not be defined at the
points in the gaps. Also, the computed solution might be arbitrarily different
from the original solution to problem (15.3)-(15.7) at any feasible point x.
Despite this, if the dimension ε of the gaps is close to the machine precision
and comparable to sensor/estimation errors, such an approach very appeal-
ing in practice. To the best of our knowledge in some cases this approach is
the only one that is computationally tractable for computing controllers for
discontinuous hybrid systems fulfilling state and input constraints that are
implementable in real-time.

Without Assumption 15.1, problem (15.3)-(15.7) is well defined only if an
optimizer exists for all x(0). In general, this is not easy to check. The dynamic
programming algorithm described here could be used for such a test but the
details are not included in this book.

15.8 Receding Horizon Control

Consider the problem of regulating to the origin the PWA system (15.2).
Receding Horizon Control (RHC) can be used to solve such a constrained
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regulation problem. The control algorithm is identical to the one outlined in
Chapter 11 for linear systems. Assume that a full measurement of the state
x(t) is available at the current time t. Then, the finite time optimal control
problem

J∗
t (x(t)) , min

Ut→t+N|t

Jt(x(t), Ut→t+N |t) (15.59a)

subj. to





xt+k+1|t = Aixt+k|t + Biut+k|t + f i if
[ xt+k|t

ut+k|t

]
∈ C̃i

xt+N |t ∈ Xf

xt|t = x(t)
(15.59b)

is solved at each time t, where Ut→t+N |t = {ut|t, . . . , ut+N−1|t}. Let U∗
t =

{u∗
t|t, . . . , u

∗
t+N−1|t} be the optimal solution of (15.59) at time t. Then, the

first sample of U∗
t is applied to system (15.2):

u(t) = u∗
t|t. (15.60)

The optimization (15.59) is repeated at time t + 1, based on the new state
xt+1|t+1 = x(t + 1), yielding a moving or receding horizon control strategy.

Based on the results of previous sections the state feedback receding hori-
zon controller (15.59)–(15.60) can be immediately obtained in two ways: (i)
solve the MIQP/MILP (15.24) for xt|t = x(t) or (ii) by setting

u(t) = f∗
0 (x(t)), (15.61)

where f∗
0 : Rn → Rnu is the piecewise affine solution to the CFTOC (15.59)

computed as explained in Section 15.6. Clearly, the explicit form (15.61) has
the advantage of being easier to implement, and provides insight on the type
of action of the controller in different regions of the state space.

15.8.1 Stability and Feasibility Issues

As discussed in Chapter 11 the feasibility and stability of the receding horizon
controller (15.59)–(15.60) is, in general, not guaranteed.

Theorem 11.2 in Chapter 11 can be immediately modified for the hybrid
case: persistent feasibility and Lyapunov stability are guaranteed if the termi-
nal constraintXf is a control invariant set (assumption (A2) in Theorem 11.2)
and the terminal cost p(xN ) is a control Lyapunov function (assumption (A3)
in Theorem 11.2). In the hybrid case the computation of control invariant
sets and control Lyapunov functions is computationally more involved. As in
the linear case, Xf = 0 satisfies the aforementioned properties and it thus
represents a very simple, yet restrictive, choice for guaranteeing persistent
feasibility and Lyapunov stability.
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15.8.2 Examples

Example 15.6. Consider the problem of regulating the piecewise affine sys-
tem (15.29) to the origin. The finite time constrained optimal control (15.7)
is solved with N = 3, P = Q = [ 1 0

0 1 ], R = 1, and Xf = [−0.01 0.01] ×
[−0.01 0.01]. Its state feedback solution (15.9) u∗(x(0)) = f∗

0 (x(0)) at time 0
is implemented in a receding horizon fashion, i.e. u(x(k)) = f∗

0 (x(k)).
The state feedback control law with cost (15.5) with p = ∞ has been

computed in Example 15.4 and it consists of 84 polyhedral regions. None of
them has multiplicity higher than 1. Figure 15.7 shows the corresponding
closed-loop trajectories starting from the initial state x(0) = [−2 2]′.

The state feedback control law with cost (15.6) has been computed in
Example 15.4 and it consists of 92 polyhedral regions, some of them have
multiplicity higher than 1. Figure 15.8 shows the corresponding closed-loop
trajectories starting from the initial state x(0) = [−2 2]′.
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Fig. 15.7 Example 15.6: MPC control of system (15.29) when infinity norm is used

Example 15.7. Consider the problem of regulating the hybrid spring-mass
system (15.57) described in Examples 14.2 and 15.5 to the origin. The finite
time constrained optimal control problem (15.7) with cost (15.6) is solved
with N = 3, P = Q = [ 1 0

0 1 ], R = [ 0.2 0
0 1 ]. Its state feedback solution (15.9)

u∗(x(0)) = f∗
0 (x(0)) at time 0 is implemented in a receding horizon fashion,

i.e. u(x(k)) = f∗
0 (x(k)).

The state-feedback solution was determined in Example 15.5 for the case of
no terminal constraint (Figure 15.5(a)). Figure 15.9 depicts the corresponding
closed-loop trajectories starting from the initial state x(0) = [3 4]′.

The state-feedback solution was determined in Example 15.5 for terminal
constraint Xf = [−0.01, 0.01]× [−0.01, 0.01] (Figure 15.5(b)). Figure 15.10
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Fig. 15.8 Example 15.6: MPC control of system (15.29) when squared Euclidian
norm is used

depicts the corresponding closed-loop trajectories starting from the initial
state x(0) = [3 4]′.
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Fig. 15.9 Example 15.7: MPC control of system (15.57) without terminal constraint
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Fig. 15.10 Example 15.6: MPC control of system (15.57) with terminal constraint





Appendix A

Polycover Algorithms

A.1 Polycover: MILP formulation

We note that P is not fully covered by Q, i.e.

P * (∪NQ

i=1Qi) (A.1)

if and only if there is a point x inside of P that violates at least one of the
constraints of each Qi, i = 1, . . . , NQ. This is equivalent to the following set
of conditions

∃x ∈ P : ∃ji ∈ {1, . . . , nQi}, [Qx
i ](ji)x− [Qc

i ](ji) > 0, i = 1, . . . , NQ. (A.2)

To express this violation of constraints we introduce slack variables

yi,j(x) =

{
[Qx

i ](j)x− [Qc
i ](j) if [Qx

i ](j)x− [Qc
i ](j) ≥ 0,

0 if [Qx
i ](j)x− [Qc

i ](j) ≤ 0,
, j = 1, . . . , nQi , i = 1, . . . , NQ.

(A.3)
The expression (A.2) can now be posed as a feasibility question in x and yi,j

P xx ≤ P c,∑nQi

j=1 yi,j > 0, i = 1, . . . , NQ
(A.4)

Checking the condition (A.4) is still not possible with standard solvers, since
the relation (A.3) describes a non-linear function. However, by introducing
auxiliary binary variables one can rewrite (A.3) as the following equivalent
set of linear inequalities

367
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


0 −m
0 −M
1 −M
−1 m

1 −m
−1 M




[
yi,j

δi,j

]
6




[Qx
i ](j)x− [Qc

i ](j) −m
−[Qx

i ](j)x + [Qc
i ](j)

0
0

[Qx
i ](j)x− [Qc

i ](j) −m
−[Qx

i ](j)x + [Qc
i ](j) + M




δi,j ∈ {0, 1}, j = 1, . . . , nQi , i = 1, . . . , NQ,

(A.5)

where δi,j are auxiliary binary variables and m, M ∈ R are bounds on con-
straint expressions that can be pre-computed (or overestimated) beforehand

m ≤ min
x,i,j

[Qx
i ](j)x− [Qc

i ](j)

subj. to P xx ≤ P c

j ∈ {1, . . . , nQi}
i ∈ {1, . . . , NQ}

(A.6)

M ≥ min
x,i,j

[Qx
i ](j)x− [Qc

i ](j)

subj. to P xx ≤ P c

j ∈ {1, . . . , nQi}
i ∈ {1, . . . , NQ}

(A.7)

Actually, in terms of the number of inequalities that are used, (A.5) can be
further simplified to




−1 0
−1 0

1 −m
1 −M



[

yi,j

δi,j

]
6




0
−[Qx

i ](j)x + [Qc
i ](j)

[Qx
i ](j)x− [Qc

i ](j) −m
0




δi,j ∈ {0, 1}, j = 1, . . . , nQi , i = 1, . . . , NQ

(A.8)

Since (A.4) and (A.8) describe a Mixed Integer Linear Programming (MILP)

feasibility problem it follows that we can check if P * (∪NQ

i=1Qi) by solving
an MILP feasibility problem.

However, instead of solving a feasibility MILP problem with (A.4) it may
be more useful (and numerically robust) to solve the following optimality
MILP problem

max
λ,x,δi,j,yi,j

λ

subj. to





P xx ≤ P c,∑nQi

j=1 yi,j ≥ λ, i = 1, . . . , NQ∑nQi

j=1 di,j ≥ 1, i = 1, . . . , NQ

Eq.(A.8)

(A.9)
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Effectively, the optimal value λ∗ is related to the size of a largest non-covered
part of P .

Theorem A.1. Let λ∗ be the solution to the problem (A.9), then P *
(∪NQ

i=1Qi) if and only if λ∗ > 0.

Proof: Follows from the construction of the MILP problem (A.9). �

Remark A.1. Strictly speaking, condition
∑nQi

j=1 di,j ≥ 1 in (A.9) is redun-
dant, but it reduces the problems with the integrality tolerances in existing
MILP solvers. Also note that when solving (A.9) there is no need for condition
yi,j ≥ 0 (first row in Eq. (A.8)).

The MILP problem (A.9) has nP + 2NQ + 3
∑NQ

i=1 nQi constraints, nx +

1 +
∑NQ

i=1 nQi real variables and
∑NQ

i=1 nQi binary variables.

A.2 Polycover: Branch & Bound algorithm

Let us repeat problem formulation once again. Let P = {x | P xx ≤ P c} be
a polyhedron in Rnx given as the intersection of nP half-spaces and Qi =
{x ∈ Rnx | Qx

i x ≤ Qc
i} be NQ polytopes in Rnx given as the intersection

of nQi half-spaces (i.e. Qx
i is a nQi × nx matrix). We want to determine if

P ⊆ (∪NQ

i=1Qi). Here we consider an exact solution to the problem by using

the algorithm that (as an extension) computes the set R = P \ (∪NQ

i=1Qi),
where R (if not empty) is given as a union of polyhedra. Without loss of
generality we will assume that the following assumption holds:

Assumption A.1 Let P and Qi, i = 1, . . . , NQ, be full-dimensional polyhe-
dra in Rnx given in the minimal H-representation: P = {x | P xx ≤ P c},
Qi = {x | Qx

i x ≤ Qc
i}, P x ∈ RnP ×nx , P c ∈ RnP , Qx

i ∈ RnQi
×nx , Qc

i ∈ RnQi ,
such that P ∩Qi 6= ∅, ∀i ∈ {1, . . . , NQ}.
Note that it is always possible to obtain normalized polyhedron in minimal
representation (see Section 3.4.4) and to remove thoseQi that do not intersect
P , e.g. by checking if Chebyshev Ball (see Section 3.4.5) of a joint polyhedra
{x | P xx ≤ P c, Qx

i x ≤ Qc
i} is nonempty.

Algorithm A.1 (Set Difference, P \ {Qi}NQ

i=1)

INPUT Polyhedron P = {x | P xx ≤ P c} and Q = {Qi}
NQ

i=1 satisfying Assumption A.1

OUTPUT R = {Ri}
NR

i=1 := regiondiff(P, {Qi}
NQ

i=1)

1. Identify for each Qi, i = 1, . . . , NQ, the set of so−called active constraints

Ai = {j | ∃x ∈ R
nx : P xx ≤ P c, [Qx

i ](j)x > [Qc
i ](j), j ∈ {1, . . . , nQi

}}. (A.10)
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2. IF ∃i : Ai = ∅ THEN LET R ← ∅ and EXIT3. Remove non-active con-
straints from Qi: Qx

i ← [Qx
i ](Ai), Qc

i ← [Qc
i ](Ai), i = 1, . . . , NQ.4. LET R =

feaspoly(P, {Qi}
NQ

i=1)5. Remove redundant constraints fromRi: Ri ← minrep(Ri), i =
1, . . . , NR. �

Algorithm A.2 (feaspoly(P , {Qi}NQ

i=1))

INPUT Polyhedron P = {x | P xx ≤ P c} and Q = {Qi}
NQ

i=1 satisfying Assumption A.1

OUTPUT Set of feasible polyhedra R = {Ri}
NR

i=1 := feaspoly(P, {Qi}
NQ

i=1)

1. LET R = ∅, k = 1

2. IF ∃x : P xx < P c, Qx
kx < Qc

k THEN go to Step 4, ELSE k ← k + 1

3. IF k > NQ THEN R ← P and EXIT, ELSE go to Step 2

4. FOR j = 1 TO nQk

4.1. IF ∃x : P xx ≤ P c, [Qx
k](j)x > [Qc

k](j)

4.1.1. LET P̃ = P ∩ {x | [Qx
k](j)x ≥ [Qc

k](j)}

4.1.2. IF NQ > k THEN R ← R∪ feaspoly(P̃, {Qi}
NQ

i=k+1), ELSE R ←R∪ P̃

4.2. LET P ← P ∩ {x | [Qx
k](j)x ≤ [Qc

k](j)}

5. EXIT �

Remark A.2. Steps 1 of Algorithm A.1 and Step 2 and Step 4.1 of Algo-
rithm A.2 are simple feasibility LP’s. Note that Algorithm A.2 would work
even if Steps 2 and 3 were not present. However, those steps have huge impact
on the complexity of the solution and the speed of computation since this
avoids unnecessary check at later stages (i.e. lower branches) of the procedure.

Remark A.3. The regiondiff algorithm (Algorithm A.1) basically imple-
ments a branch & bound search for feasible constraint combinations where
each branch corresponds to the inversion of a facet of Qi obtained in Step 3
of Algorithm A.1.

The most demanding part of the set-difference computation lies in Al-
gorithm A.2 (and it’s recursive calls). Therefore in this analysis we neglect
the cost of removal of the non-active constraints from Qi or computing the
minimal representation of the regions Ri that describe the set difference.

The worst case complexity of Algorithm A.2 can be easily established from
it’s tree-like exploration of the space. We see that the depth of the tree is
equal to the number of regions Qi, NQ. Furthermore every node on the level
i has at most nQi+1 children nodes on the level i + 1, where nQi denotes the
number of active constraints of a polytope Qi. Computation at every node
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on the level i of the tree involves solution of an LP with nx + 1 variables
and at most nP +

∑i
j=1 nQj constraints. Therefore, the overall complexity of

Algorithm A.2 is bounded with

NQ∑

i=1


lp(nx + 1, nP +

i∑

j=1

nQj )

i∏

j=1

nQi


 , (A.11)

where lp(n, m) denotes the complexity of a single LP with n variables and m
constraints.

To estimate the number of regions NR generated by the set-difference
computation we recall Buck’s formula [66] for the hyperplane arrangement
problem that gives an upper bound1 for the maximal number of cells created
by M hyperplanes in Rnx

nx∑

i=0

(
M
i

)
. (A.12)

By letting M be equal to the total number of active-constraints, i.e. M =∑
i nQi , from (A.12) follows

NR ≤
nx∑

i=1

(
M
i

)
= O(Mnx). (A.13)

Remark A.4. In practice the complexity estimate given by (A.11) is very con-
servative. Each polytope Ri, i = 1, . . . , NR, corresponds to the leaf (bottom)
node of the exploration tree in Algorithm A.1 which implies a substantial
pruning of the tree during the execution of the algorithm. Therefore we ex-
pect the overall complexity of the set-difference computation to correlate
more with the expression (A.13) than with the expression (A.11).

In a special case when we only want to check if P ⊆ (∪NQ

i=1Qi) finding any
feasible Rj in Algorithm A.2 provides a negative answer and we can abort
further search as is shown in the following algorithm.

Algorithm A.3 (iscover(P , {Qi}NQ

i=1))

INPUT P and Q = {Qi}
NQ

i=1 satisfying Assumption A.1

OUTPUT R ∈ {TRUE, FALSE}, R := iscover(P, {Qi}
NQ

i=1)

1. LET k = 1, R = FALSE

2. IF ∃x : P xx < P c, Qx
kx < Qc

k THEN go to Step 4, ELSE k ← k + 1

3. IF k > NQ THEN EXIT ELSE go to Step 2

4. FOR j = 1 TO nQk

1 The upper bound is obtained by the hyperplanes in the so-called general position.
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4.1. IF ∃x : P xx ≤ P c, [Qx
k](j)x > [Qc

k](j)

4.1.1. IF k = NQ THEN EXIT

4.1.2. LET P̃ = P ∩ {x | [Qx
k](j)x ≥ [Qc

k](j)}

4.1.3. IF iscover(P̃, {Qi}
NQ

i=k+1) = FALSE THEN EXIT

4.2. LET P ← P ∩ {x | [Qx
k](j)x ≤ [Qc

k](j)}

5. LET R = TRUE and EXIT �

Similarly to Algorithm A.2 the worst case complexity of Algorithm A.3 is
bounded by (A.11) (see also Remark A.4).



Appendix B

Merging of P-collections

B.0.1 Preliminaries

Definition B.1 (Separating Hyperplane). Suppose P1 and P2 are two
(convex) polyhedra that do not intersect, i.e. P1 ∩ P2 = ∅. A hyperplane
{x | cT x = d} with c 6= 0 and d, such that cT x ≤ d for all x ∈ P1 and
cT x ≥ d for all x ∈ P2 is called a separating hyperplane for the polyhedra P1

and P2.

Consider the markings defined in Section 3.5.3.1. The proof of the following
lemma follows directly from the definition of the markings.

Lemma B.1 (Separating Hyperplane). Given the hyperplane arrange-
ment {Hi}i=1,...,n consisting of n distinct hyperplanes, the set of markings
M(R), and the two polyhedra P1 and P2 with the corresponding markings
m1, m2 ∈ M(R) that differ in the j-th component, then Hj is a separating
hyperplane for P1 and P2.

Recall the definition of envelope in Section 3.4.2

Lemma B.2. Given the hyperplane arrangement {Hi}i=1,...,n consisting of n
distinct hyperplanes, the set of markings M(R), and the two polyhedra P1 and
P2 with the corresponding markings m1, m2 ∈ M(R), where m1(i) = m2(i)
for i ∈ I and m1(i) 6= m2(i) for i ∈ I′ with I ′ = {1, . . . , n} \ I, we construct
the marking m as follows: m(i) = m1(i) for i ∈ I and m(i) =’∗’ for i ∈ I′.
Then the envelope env(P1,P2) of the two polyhedra is given by the marking
m.

Proof: Recall that a ’∗’ in a marking means that the corresponding
hyperplane does not define the polyhedron. As all the facets of P1 and P2 are
subsets of the hyperplanes in the arrangement, and as the hyperplanes with
indices I ′ are separating hyperplanes for P1 and P2 according to Lemma B.1,
the proof follows from the definition of the envelope.

373
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The proof can be easily generalized to envelopes of more than two polyhedra.
Recall Theorem 3.2 stating that given the two polyhedra P1 and P2, their

union P1 ∪ P2 is convex if and only if P1 ∪ P2 = env(P1,P2). The following
lemma allows us to determine the convexity of two polyhedra by only evalu-
ating their corresponding markings. This lemma constitutes the basis for the
two OCR algorithms.

The following lemma allows us to determine the convexity of two polyhedra
by only evaluating their corresponding markings. This lemma constitutes the
basis for the two OCR algorithms.

Lemma B.3. Given the collection of markings M(R), the union of the two
polyhedra P1 and P2 with the markings m1, m2 ∈M(R), m1 6= m2, is convex,
if and only if the markings differ in exactly one component.

Proof: As we have Theorem 3.2 at our disposal, we only need to prove
that P1 ∪ P2 = env(P1,P2) if and only if m1 and m2 differ in exactly one
component. The ”⇐” part follows directly from Lemma B.2. The ”⇒” part
follows by contradiction. Recall, that P1∪P2 ⊆ env(P1,P2), and assume that
P1∪P2 6= env(P1,P2), i.e. there are points x ∈ env(P1,P2)\ (P1∪P2). Then
there exists at least one hyperplane that is separating x from P1 or x from
P2 besides the one that is separating P1 from P2. Thus m1 and m2 differ in
at least two components.

The concept of markings in a hyperplane arrangement allows us to evaluate
the convexity of polyhedra by applying Lemma B.3 to their associated set of
markings. The algorithms refrain from solving LPs – in fact, they extract the
information from the markings that in turn summarize the result of the LPs
solved to compute the cells of the hyperplane arrangement. Even though we
will design algorithms assuring optimality, the computation times to solve the
OCR problems are rather small making the algorithms applicable to problems
of meaningful size.

Definition B.2 (Connectivity). Two polyhedra are called neighboring poly-
hedra if they share a common facet. A set of polyhedra {Pi}i∈I is connected
if for each Pi, i ∈ I, there exists a Pj , i 6= j, j ∈ I such that Pi and Pj are
neighboring polyhedra.

Obviously, a necessary condition for the convexity of a union of a set of
polyhedra is that the set of polyhedra is connected. Connectivity can be easily
determined using the markings. Given the set of markings M(R) and the set
of polyhedra with markings mi ∈M(R), the polyhedra are connected if and
only if for each polyhedron Pmi with marking mi ∈ M(R), there exists a
polyhedron Pmj with marking mj ∈ M(R), such that mi and mj differ in
exactly one component. In order to reduce the computation time, we exploit
this fact by further partitioning the set of polyhedra with the same color into
connected subsets.
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B.1 Disjoint Optimal Complexity Reduction

Let the set Mw denote the markings of a connected subset with the same
color. We refer to the corresponding polyhedra as white polyhedra. As the
color of the remaining polyhedra is not relevant at this stage, we assume that
the remaining markings M ′

b = M(R)\Mw correspond to black polyhedra.
The basic concept of the algorithm is to derive a minimal representation of
the white polyhedra by dividing their envelope sequentially into polyhedra
using the hyperplanes of the hyperplane arrangement.

B.1.1 Algorithm based on Branch and Bound

Let the envelope of the white polyhedra with markings Mw be denoted by
Pm. The envelope is given by the marking m, which is constructed as in
Lemma B.2. Slightly abusing the notation we will write m = env(Mw). As
all white polyhedra are contained in their envelope, we can formulate an
equivalent problem with reduced complexity that considers only the black
polyhedra contained in this envelope, i.e. Mb = {mb ∈ M ′

b | Pmb
⊆ Pm},

where Pmb
denotes the polyhedron with marking mb.

Let I ∈ {1, . . . , n} denote the index set of hyperplanes in A that are
separating hyperplanes for polyhedra in the envelope Pm. According to
Lemma B.1, I is simply the collection of indices i with m(i) =’∗’. Then, we
can choose any hyperplane Hi, i ∈ I, to divide Pm into two polyhedra. Hi also
divides the sets of white and black markings respectively into two subsets.
We denote the subset of Mw that holds those markings whose i-th element is
a ’−’ with Mw|m(i)=−, i.e. Mw|m(i)=− = {m ∈ Mw | m(i) =’−’}. Mw|m(i)=+

and the partition of Mb are defined accordingly. Clearly, the unions of each
pair of subset equal the original sets Mw and Mb, respectively. Next, the
algorithm branches on the i-th hyperplane by calling itself twice – first with
the arguments Mw and Mb restricted to possessing a ’−’ as i-th element, and
then correspondingly with the arguments restricted to a ’+’. Both function
calls return sets of markings Mm corresponding to merged white polyhedra.
This is repeated for all the remaining hyperplanes with indices i ∈ I.

A branch terminates if one of the following two cases occurs. First, if the
set of markings corresponding to black polyhedra is empty, i.e. Mb = ∅. This
implies, that at this point the envelope contains only white polyhedra. Hence,
the envelope represents the union of the set of white polyhedra with markings
in Mw, and it is convex by construction. We will refer to this convex set as
a merged white polyhedron. Second, if the set of markings corresponding to
white polyhedra is empty, i.e. Mw = ∅, as this implies that no more white
polyhedra are available.

The algorithm uses standard bound techniques to cut off suboptimal
branches by using the two global variables z and z̄. z denotes the current
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Fig. B.1 Example with four hyperplanes inR = R2 and the corresponding markings.
The polyhedra corresponding to Mw are white and the polyhedra corresponding to
M ′

b are grey shaded, respectively

number of merged white polyhedra and z̄ is the local upper bound on z.
Initially, z is set to 0, and z̄ is initialized as the number of original white
polyhedra. Branching is only performed if z < z̄, as branches with z > z̄ are
either equivalent to or worse than the current optimum.

The above described branch and bound algorithm is summarized in the
following.

Algorithm B.1.1

1 [] function Mm = Merge( Mw, M ′
b, z, z̄ )

2 [] m = env(Mw)

3 [] Mb = {mb ∈M ′
b | Pmb

⊆ Pm}
4 [] if Mw = ∅ then Mm = ∅
5 [] elseif Mb = ∅ then Mm = m

6 [] else

7 [] I = {i | m(i) = ’∗’}
8 [] Mm = ∅
9 [] for i ∈ I

10 [] if z < z̄ then

11 [] Mm1 = Merge ( Mw|m(i)=− , Mb|m(i)=− , z, z̄ )

12 [] Mm2 = Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + |Mm1 |, z̄ )

13 [] if Mm = ∅ or |Mm1 |+ |Mm2 | < |Mm| then

14 [] Mm = Mm1 ∪Mm2

15 [] z̄ = min(z̄, z + |Mm|)
16 [] return Mm
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Example B.1. As an example with four hyperplanes in a two-dimensional
space consider Fig. B.1. The envelope of the white polyhedra is given by the
positive half space of H4 and the marking m = +. Thus, only the black poly-
hedra with markings Mb = {+−−+, ++−+} are considered, and branching is
only performed on the hyperplanes in I = {1, 2, 3}. Branching on H1 leads in
one step to the two merged (white) polyhedra with Mm = {− +, ++++}. This
is already the optimal solution. Nevertheless, the algorithm also branches on
the two remaining hyperplanes in I and finds two additional solutions that
are equivalent to the first one in terms of the number of polyhedra.

Lemma B.4. Algorithm B.1.1 solves the Disjoint Optimal Complexity Re-
duction Problem 3.1.

Proof: The proof follows in a constructive way from the algorithm.
When branching on the i-th hyperplane Hi, the set of white markings is
divided into the two sets Mw|m(i)=− and Mw|m(i)=+ according to the two half
spaces defined by Hi. This operation assures that the merged polyhedra are
mutually disjoint. In particular, as no white polyhedra are discarded during
the operation and since Mw = (Mw|m(i)=−) ∪ (Mw|m(i)=+), the union of the
merged polyhedra equals the union of the white polyhedra. The minimality of
the number of merged polyhedra is ensured by branching on all hyperplanes
unless bound techniques come into effect cutting off suboptimal branches.

We conclude that the proposed algorithm is efficient as the convexity recog-
nition is performed only by comparing the markings rather than by solving
LPs, it is optimal as the branch and bound algorithm guarantees that the
global minimum is found, and it is a top down approach based on the notion
of the envelope with counterexamples.

B.1.2 Branching Heuristics

Apart from bound techniques, additional heuristics can be used to greatly
reduce the computation time. These heuristics provide the hyperplanes with
branching priorities according to their expected benefit in the OCR process
and allow for deciding on which hyperplane to branch first. The heuristics
are intended to quickly find a solution equal or close to the optimal one thus
allowing for effective pruning of suboptimal branches.

Specifically, we associate to the hyperplanes the following (descending)
branching order:

1. Hyperplanes that separate two non-connected groups of white polyhedra
thus allowing us to divide the problem into two subproblems. Connec-
tivity can be easily determined. Since in the subproblems only the black
polyhedra within the envelope of white polyhedra are considered, any
hyperplane separating the two groups of white polyhedra yields the same
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subproblems. Thus, we are only interested in the first hyperplane found
with this property.

2. Hyperplanes, such that one half space contains only white polyhedra1.
If so, we choose the hyperplane yielding the maximal number of white
polyhedra.

3. Any remaining hyperplane.

B.2 Non-Disjoint Optimal Complexity Reduction

B.2.1 Boolean Calculus

We start by rather informally recalling basic terminology for Boolean calcu-
lus, which can be found in any digital circuit design textbook (see e.g. [154]).

A Boolean variable is a {0, 1}, {false, true} or binary variable. A Boolean
expression is an algebraic statement containing Boolean variables and oper-
ators. To improve the readability, we consider the three binary operators ’·’
(AND), ’+’ (OR) and ’̄ ’ (NOT), rather than ’∧’, ’∨’ and ’!’. Each appearance
of a Boolean variable (or its complement) in an expression is called a literal. A
product term is an ANDed string of literals containing a subset of the given
Boolean variables (or their complements), while a minterm is a particular
product term, in which all variables appear exactly once (complemented or
not).

A Boolean function uniquely maps some number of Boolean inputs into
a Boolean variable using a Boolean expression. A Boolean function can be
represented in two canonical forms: sum of products and product of sums.
Here, we focus on sum of products, which are also known as disjunctive
normal form or minterm expansion. A Boolean expression is in disjunctive
normal form, if it is a disjunction (sequence of ORs) consisting of one or more
disjuncts, each of which is a conjunction (AND) of one or more literals.

B.2.2 Logic Minimization

In this section, we reformulate the complexity reduction problem as a logic
minimization problem. Thus, instead of the marking with {−, +} elements,
we will use a Boolean vector with {0, 1} components. Logic minimization is
commonly used in digital circuit design, where a given Boolean function is
to be minimized in terms of the number of literals and product terms. The
number of literals is equivalent to the total number of gate inputs in a circuit

1 Note that the existence of hyperplanes having in one half space only black polyhedra
would contradict the fact that only black polyhedra within the envelope of white
polyhedra are taken into account.
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and is also proportional to the amount of wiring necessary to implement the
Boolean function. The number of product terms, on the other hand, relates
to the number of gates and is thus a measure of the circuit area needed.

Logic minimization started in the 1950s with the work of Veitch [256]
and Karnaugh [153]. They introduced the K-map to manually minimize sim-
ple two-level2 Boolean functions with up to six variables. A few years later,
Quine [218] and McCluskey [189] developed more sophisticated and system-
atic minimization techniques to obtain a two-level implementation of a given
Boolean function with the minimum number of gates. As finding a global
minimum is known to belong to the class of NP-complete problems, the
Quine-McCluskey algorithm often becomes computationally intractable even
for medium sized problems with some 20 variables. To extend the applicabil-
ity of logic minimization to larger problems, a number of heuristic approaches
were introduced in the tools MINI [141] and PRESTO [64].

Inspired by MINI and PRESTO, ESPRESSO-II [63] was designed in the
beginning of the 1980s. The aim was to build a logic minimization tool that
is able to solve most of the posed problems without the usage of excessive
computational power, such that the solution is close or equal to the global
minimum. A number of improved heuristics are included in the tool lead-
ing to small computation times and solutions that are at least for medium
sized problems globally optimal. A great flexibility is achieved by numerous
options allowing one to also enforce global optimality for large problems,
thus guaranteeing the minimum number of product terms while heuristically
minimizing the number of literals. The tool is readily available from the Uni-
versity of California, Berkeley [88], and it has been employed for the examples
presented in the remainder of this chapter.

B.2.3 Problem Formulation with Boolean Logic

For a hyperplane arrangement with n hyperplanes Hi = {x ∈ Rd | aT
i x = bi},

i ∈ {1, . . . , n}, in the d-dimensional Euclidian space Rd we had defined in
Section 3.5.3.1 in (3.35) the simplified sign vector SV : Rd → {−, +}n, and
for a given marking m a polyhedral cell of the arrangement was Pm = {x ∈
Rd | SV(x) = m}.

Alternatively, we redefine the sign vector as the function SV′ : Rd →
{0, 1}n that maps x into a Boolean vector with components

SV′
i(x) =

{
0 if aT

i x ≤ bi,
1 if aT

i x > bi
for i ∈ {1, 2, . . . , n} , (B.1)

2 The term two-level relates to the implementation of such a function using digital
gates. If the function is in disjunctive normal form, for example, NOT gates constitute
the zero level, AND gates the first level, and OR gates the second level.
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where we use the dash to distinguish it from the original sign vector (3.35).
Accordingly, a polyhedral cell is defined as Pδ = {x ∈ Rd | SV′(x) = δ} for
a given Boolean vector δ, which replaces the marking m. Let ∆(R) be the
image of SV′(x) for x ∈ R ⊆ Rd, namely the collection of all the possible
Boolean vectors of all the points in R.

The ’ ’ element, which extends the sign vector by denoting hyperplanes
that are not a facet of the associated polyhedron, is translated into Boolean
variables that are removed from the Boolean vector δ. Thus δ has in general
a variable number of components.

B.2.4 Algorithm based on Logic Minimization

We start by introducing the Boolean function fW that – given the Boolean
vector δ – evaluates whether the color of the polyhedron is white, black or
undecided. The color is undecided if the corresponding polyhedron is not a
cell in the hyperplane arrangement, i.e. the corresponding δ is not contained
in ∆(R) and the polyhedron features an empty interior. Specifically, fW

yields for δ corresponding to white polyhedra a ’1’, for black ones a ’0’ and
for empty ones (with an empty interior) an ’X ’, which is usually referred to
as a don’t care in digital circuit design.

We write fW in disjunctive normal form. Each minterm in fW represents a
white polyhedron, each literal refers to a facet of such a polyhedron and fW

represents the union of all white polyhedra. Logic minimization can be used to
reduce the number of terms in fW, which is equivalent to reducing the number
of white polyhedra, and additionally to reduce the number of literals of each
term. The latter refers to reducing the number of facets per polyhedron.
These objectives lead in general to overlapping polyhedra. Overlaps not only
allow for reducing the overall number of product terms and literals as will
be shown in Section B.3, but in particular in digital circuit design, this is a
highly desired feature as the occurrence of so-called hazards resulting from
different gate propagation times can be reduced or even avoided.

Alternatively, one may represent fW in form of a truth table3. Such a truth
table is the preferred input of ESPRESSO-II, which we use to perform the
logic minimization. With respect to a Boolean function, a truth table carries
the main advantage that it allows one to provide the logic minimization
tool with additional structural information, namely empty polyhedra can be
specified with an ’X ’4. During the minimization process, the tool assigns

3 A truth table is a two-dimensional array with n + 1 columns, where the first n
columns correspond to the possible values of n (Boolean) inputs, and the last column
to the Boolean function output. The rows list all possible combinations of inputs
together with the corresponding outputs.
4 The number of rows in the truth table is exponential in n (the length of the Boolean
vector δ given by the number of hyperplanes in the arrangement). Yet according
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(a) Four hyperplanes in R = R
2 and the cor-

responding Boolean vectors δ
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Fig. B.2 Revisited Example B.1 with the hyperplane arrangement, the correspond-
ing Boolean variables and the truth table

to the polyhedra with don’t cares a color such that the overall number of
product terms and literals becomes minimal.

The result of the logic minimization is either a simplified truth table or a
reduced disjunctive normal form. Both representations directly translate into
the (overlapping) set of merged polyhedra {Qi}i=1,...,q.

We refer to the logic minimization as Algorithm B.2.1. Summing up, for
a given color, the truth table with the Boolean function fW is built, a logic
minimization tool (here ESPRESSO-II) is used to derive a simplified truth
table minimal in the number of rows (which refer to product terms and
polyhedra) and, with second priority, minimal in the number of entries per
row (which refer to literals and facets).

Example B.2. Reconsider Example B.1 with the hyperplanes and markings
as in Fig. B.1, where we aim at minimizing the number of white polyhedra.
Here, we associate with each hyperplane a Boolean variable δi, which we
collect in the Boolean vector δ, and restate the problem in terms of δ as
shown in Fig. B.2(a). The Boolean function for the white polyhedra follows
immediately to

to Buck’s formula (3.36), the great majority of these rows refers to don’t cares. In
ESPRESSO-II, the truth table can be passed to the solver by only specifying the rows
with fW = 0 and fW = 1, where ESPRESSO-II complements the rows with fW = X
internally. This technique allows for greatly reducing the memory requirement when
passing the OCR problem to ESPRESSO-II.
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fW = δ̄1δ̄2δ̄3δ4 + δ̄1δ̄2δ3δ4 + δ̄1δ2δ3δ4 + δ1δ2δ3δ4 . (B.2)

Thus, a given x ∈ R determines δ via (B.1), and fW answers the question,
whether x belongs to a white or black polyhedron. Simplifying this function
algebraically leads to fW = δ̄1δ̄2δ4 + δ2δ3δ4. For this, we have not exploited
the don’t cares.

Alternatively, we may translate Fig. B.2(a) into the truth table for white
polyhedra shown in Table B.2(b). Here, the empty polyhedra are listed with
an ’X ’. Using ESPRESSO-II, this additional information allows one to obtain
the representation fW = δ̄1δ4+δ3δ4 that is minimal in the number of product
terms (polyhedra) and the number of literals (facets). In terms of markings,
this result corresponds to Mm = {− +, ++}. Compared to Example B.1,
where the disjoint OCR Algorithm based on the markings yielded Mm =
{− +, ++++}, the solution here is reduced by two facets. In general, as we
will see in Section B.3, allowing for non-disjoint polyhedra often leads to
solutions with less polyhedra and less facets with respect to the case where
we restrict ourself to disjoint polyhedra.

Lemma B.5. Algorithm B.2.1 solves the Non-Disjoint Optimal Complexity
Reduction Problem 3.2.

Proof: Given the resulting white polyhedra {Qi}i=1,...,q the proof con-
tains three parts. Firstly, we need to prove that adding additional hyperplanes
to the arrangement does not improve the solution by reducing q. This follows
directly from the fact that only facets separating black and white polyhe-
dra are needed as facets for Qi, and that all these facets are subsets of the
hyperplanes contained in the arrangement. Secondly, recall the equivalence
between polyhedra and product terms, and facets and literals, respectively.
As the logic minimization tool yields the minimal number of product terms
(assuming that empty polyhedra are included in the minimization process as
don’t cares), q is minimal, too. Furthermore, the equivalence ensures that the
union of the resulting polyhedra Qi equals the union of the original white
polyhedra. Thirdly, the minimization of the number of literals leads to the
minimal number of facets.

B.2.5 Multiple-Valued Logic Minimization

Let a PWA system have |C| different dynamics or feedback-laws, namely the
colors C = {0, . . . , |C| − 1}. With each color we associate a Boolean function
and derive a truth table with |C| Boolean outputs. So far, we have considered
only OCR problems with two colors (white and black) using Boolean logic
minimization. Multiple-color problems were handled by selecting one color
c ∈ C as white color and collecting the remaining colors C\c as black color.
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The polyhedra were merged for each color separately, namely by solving |C|
independent OCR problems.

Alternatively, associate with the colors the integers c ∈ C, derive one
multiple-valued Boolean function (with image C), and set up a truth table
with one integer output. Subsequently, consider one OCR for all colors at
the same time by running one multiple-valued logic minimization, which is
offered for example by ESPRESSO-II. The result is the same as before, but
the computation time is in general reduced.

B.3 Local and Global Optimality

B.3.1 Derivation of Global Hyperplane Arrangement

The Algorithms B.1.1 and B.2.1 in the proposed form are only applicable
to problems with a globally valid hyperplane arrangement. In this section,
we remove Assumption 3.1 and propose two extensions that will allow us
to also employ the algorithms for problems with local hyperplane arrange-
ments, or even more general, for problems that altogether lack a hyperplane
arrangement.

As mentioned before, PWA models resulting from the Mode Enumeration
Algorithm often contain a collection of local hyperplane arrangements, where
each one is defined in a polyhedron R, which is a subset of the state-input
space, namely R ⊆ X × U . For a given R, the hyperplane arrangement is
readily available together with the markings. Thus, OCR can be performed
for each subset R, and the overall solution is the union of the local solutions.
Even though the results are locally optimal, the overall solution is in general
suboptimal. As an example, consider two local hyperplane arrangements that
each encompass one white polyhedron and a number of black polyhedra, and
assume that the union of these two white polyhedra is convex. Using Algo-
rithm B.1.1 or B.2.1 twice (for each local hyperplane arrangement) fails to
merge the two white polyhedra, and is thus clearly suboptimal. Neverthe-
less, if we are interested only in reducing the number of polyhedra but not
necessarily in finding the minimal number, and have rather limited time and
computational power at our disposal, this approach is meaningful.

If the aim is to derive the optimal solution, we need to compute the global
hyperplane arrangement by extending the facets of the polyhedra. Here, we
give only a brief outline of such an algorithm, which consists of three major
steps. First, we collect the facets of all polyhedra. By removing duplicates, we
obtain the hyperplane arrangement. Next, we determine the relative position
of each polyhedron with respect to each hyperplane. This yields a prelimi-
nary set of markings, where we use an additional symbol to denote polyhe-
dra whose interior intersects with a hyperplane. The algorithm resolves these
markings in a last step by dividing the corresponding polyhedra into two. As
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(a) Original white and black
polyhedra

(b) Modified polyhedra in a
(global) hyperplane arrange-
ment

(c) Polyhedra resulting from
disjoint OCR

(d) Polyhedra resulting from
non-disjoint OCR

Fig. B.3 Derivation of cells defined in a global hyperplane arrangement and OCR
in Example B.3

this operation involves solving LPs and increases the number of polyhedra
significantly, such an algorithm is computational tractable only for problems
with a limited complexity. However, a number of enhancements, namely the
exploitation of parallel hyperplanes and the removal of redundant hyper-
planes reduces the computation time remarkably. We refer to this approach
as Algorithm B.3.1.

Example B.3. Consider the sets of white and black polyhedra in Fig. B.3(a).
The above proposed algorithm identifies 13 different facets. Since the ones
constraining the convex hull of the polyhedra are not considered, the hyper-
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plane arrangement encompasses nine hyperplanes shown as dashed lines in
Fig. B.3(b). As a result, the number of white polyhedra is blown up from 6
to 16. OCR restricted to disjoint polyhedra (Algorithm B.1.1) yields three
white polyhedra depicted in Fig. B.3(c), whereas Algorithm B.2.1 yields only
two white polyhedra that are overlapping as indicated by the dashed lines in
Fig. B.3(d).

It is particularly interesting to observe that merging the original white
polyhedra in Fig. B.3(a) in a optimal way without using a global hyperplane
arrangement would lead to four white polyhedra. Such an approach would
require to determine the convexity of each union (each pair, triple, etc.) of
white polyhedra by using the algorithms in [32], which resort to solving LPs,
and to choose among the convex unions a combination that yields the minimal
number of unions and covers all white polyhedra. Despite the fact that such
an approach is computationally intractable even for very small problems, it
is also in general inferior to the OCR algorithms in terms of the number of
resulting polyhedra as the example demonstrates.

Thus deriving the global hyperplane arrangement first and reducing the com-
plexity subsequently in an optimal way yields in general a lower number of
polyhedra compared to the case, where the original polyhedra are merged
optimally without the notion of a global hyperplane arrangement. This may
serve as a motivation to extend the facets and to derive the hyperplane ar-
rangement, although doing so significantly blows up the number of polyhedra
to be considered.

B.3.2 Optimality of Algorithms

In the following, we compare the two OCR algorithms with each other. Both
are optimal in the sense that they yield the minimum number of polyhedra for
the specific problem they solve (Problems 3.1 and 3.2). Yet, as the problems
differ regarding the property whether the resulting polyhedra are required to
be disjoint or not, the complexity of the solution in terms of the number of
polyhedra and facets differs in general, too.

In Problem 3.1, the resulting polyhedra are required to be disjoint and
unions of the original polyhedra. Thus, Problem 3.1 is an optimal merging
problem, which can be also considered as a specific optimal set partitioning
problem. The problem is specific, since the hyperplanes along which the set
can be partitioned are restricted to the hyperplanes given by the facets of
the original polyhedra to be merged. This issue is rather subtle, yet we would
like to clarify it with the following example.

Example B.4. For given sets of white and black polyhedra, assume we have
derived the (global) hyperplane arrangement, split the polyhedra into cells de-
fined in this arrangement, and run subsequently Algorithm B.1.1 that yields
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(a) Polyhedra resulting from
disjoint OCR

(b) Polyhedra resulting from
non-disjoint OCR

Fig. B.4 OCR in Example B.4 visualizing the consequence of restricting the hyper-
plane arrangement to hyperplanes given by facets of the original white polyhedra

the three white polyhedra shown in Fig. B.4(a). This solution is optimal with
respect to Problem 3.1. Yet, adding to the hyperplane arrangement an ad-
ditional vertical hyperplane that cuts through the center of the figure would
reduce the solution to only two white polyhedra. On the other hand, Algo-
rithm B.2.1 leads to the two white polyhedra depicted in Fig. B.4(b), where
the dashed lines indicate the overlaps. Adding additional hyperplanes to the
arrangement before running Algorithm B.2.1 would not improve on the so-
lution. This holds in general thanks to Lemma B.6 presented at the end of
this section.

We conclude that even though Algorithm B.1.1 derives a solution that is
minimal in the number of merged polyhedra, by introducing additional facets
the number of polyhedra might be further reduced. Thus, in general, the
merged polyhedra constitute only a suboptimal solution to the (more general)
optimal set partitioning problem, which is not addressed here. Nevertheless,
even though such a case has been constructed here, they are very rare and
have so far been not encountered in applications.

In Problem 3.2, the restriction requiring the resulting polyhedra to be dis-
joint and unions of the original polyhedra is dropped. Hence strictly speaking,
the second problem is not a merging problem but a more general optimal set
covering problem. As Problem 3.2 is less restrictive than Problem 3.1, we
expect Algorithm B.2.1 to yield in general a lower number of polyhedra and
facets than Algorithm B.1.1. This is confirmed by the Examples B.3 and B.4.
In particular, as already mentioned above, adding additional hyperplanes
does not improve on the solution. This leads to the following key lemma.
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Lemma B.6. Algorithm B.3.1 followed by Algorithm B.2.1 solves the Gen-
eral Non-Disjoint Optimal Complexity Reduction Problem 3.3.

Proof: The proof follows directly from Problem 3.2, Lemma B.5 and
the fact that Algorithm B.2.1 minimizes (with second priority) the number
of facets.
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20. M. Baotić and F.D. Torrisi. Polycover. Technical Report AUT03-11, Au-
tomatic Control Laboratory, ETHZ, Switzerland, 2003. Available from
http://control.ee.ethz.ch/research/publications/pub lications.msql?
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126. B. Grünbaum. Convex Polytopes. Springer-Verlag, second edition, 2000.
127. E. Guslitzer. Uncertainty-immunized solutions in linear programming. Master’s

thesis, Technion (Israel Institute of Technology), Haifa, Israel, 2002.
128. P.O. Gutman. Online use of a linear programming controller. In G. Ferrate and

E.A. Puente, editors, Software for Computer Control 1982. Proceedings of the
Third IFAC/IFIP Symposium, pages 313–318. Pergamon, Oxford, 1983.

129. P.O. Gutman and M. Cwikel. Admissible sets and feedback control for discrete-
time linear dynamical systems with bounded control and states. IEEE Trans.
Automatic Control, AC-31(4):373–376, 1986.

130. P.O. Gutman and M. Cwikel. An algorithm to find maximal state constraint for
discrete-time linear dynamical systems with bounded control and states. IEEE
Trans. Automatic Control, AC-32(3):251–254, 1987.

131. A Hassibi and S. Boyd. Quadratic stabilization and control of piecewise-linear
systems. In Proc. American Contr. Conf., Philadelphia, Pennsylvania USA,
June 1998.

132. J.P. Hayes. Introduction to Digital Logic Design. Addison-Wesley Publishing
Company, Inc., 1993.

133. S. Hedlund and A. Rantzer. Optimal control of hybrid systems. In Proc. 38th
IEEE Conf. on Decision and Control, pages 3972–3976, Phoenix, AZ, December
1999.

134. S. Hedlund and A. Rantzer. Convex dynamic programming for hybrid systems.
IEEE Trans. Automatic Control, 47(9):1536–1540, September 2002.

135. W.P.H.M Heemels, B. de Schutter, and A. Bemporad. On the equivalence of
classes of hybrid dynamical models. In Proc. 40th IEEE Conf. on Decision and
Control, pages 364–369, Orlando, Florida, 2001.

136. W.P.M.H. Heemels. Linear complementarity systems: a study in hybrid dy-
namics. PhD thesis, Dept. of Electrical Engineering, Eindhoven University of
Technology, The Netherlands, 1999.

137. W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland. Linear complementarity
systems. SIAM Journal on Applied Mathematics, 60(4):1234–1269, 2000.

138. W.P.M.H. Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid
dynamical models. Automatica, 37(7):1085–1091, July 2001.

139. J. P. Hespanha, S. Bohacek, K. Obraczka, and J. Lee. Hybrid modeling of TCP
congestion control. In M.D. Di Benedetto and A. Sangiovanni Vincentelli, edi-
tors, Hybrid Systems: Computation and Control, volume 2034 of Lecture Notes
in Computer Science, pages 291–304. Springer-Verlag, 2001.

140. W. M. Hogan. Point-to-set maps in mathematical programming. SIAM Review,
15(3):591–603, July 1973.

141. S.J. Hong, R.G. Cain, and D.L. Ostapko. MINI: A heuristic approach for logic
minimization. IBM J. of Res. and Dev., 18:443–458, 1974.

142. J.N. Hooker. Logic-Based Methods for Optimization: Combining Optimization
and Constraint Satisfaction. Wiley, New York, 2000.

143. T. Huerlimann. Reference Manual for the LPL Modeling Language, Ver-
sion 4.42. Departement for Informatics, Université de Fribourg, Switzerland,
http://www2-iiuf.unifr.ch/tcs/lpl/TonyHome.htm , 2001.

144. A. Jadbabaie and J. Jie Yu Hauser. Stabilizing receding horizon control of
nonlinear systems: a control lyapunov function approach. volume 3, pages 1535
–1539 vol.3, 1999.

http://control.ee.ethz.ch/research/publications/publications.msql?
http://www2-iiuf.unifr.ch/tcs/lpl/TonyHome.htm


396 B Merging of P-collections

145. M. Johannson and A. Rantzer. Computation of piece-wise quadratic Lyapunov
functions for hybrid systems. IEEE Trans. Automatic Control, 43(4):555–559,
1998.
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236. M.M. Seron, J.A. DeDoná, and G.C. Goodwin. Global analytical model predic-
tive control with input constraints. In Proc. 39th IEEE Conf. on Decision and
Control, pages 154–159, 2000.

237. J. Serra. Image Analysis and Mathematical Morphology, Vol II: Theoretical
advances. Academic Press, 1988.

238. M.S. Shaikh and P.E. Caines. On the optimal control of hybrid systems: op-
timization of trajectories, switching times and location schedules. In 6th Int.
Workshop on Hybrid Systems: Computation and Control, Prague, The Czech
Republic, 2003.

239. B.I. Silva, O. Stursberg, B.H. Krogh, and S. Engell. An assessment of the current
status of algorithmic approaches to the verification of hybrid systems. In Proc.
40th IEEE Conf. on Decision and Control, pages 2867–2874, Orlando, Florida,
December 2001.

240. E. D. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE Trans.
Automatic Control, 26(2):346–358, April 1981.

241. E.D. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE Trans.
Automatic Control, 26(2):346–358, April 1981.

242. E.D. Sontag. Interconnected automata and linear systems: A theoretical frame-
work in discrete-time. In R. Alur, T.A. Henzinger, and E.D. Sontag, editors,
Hybrid Systems III - Verification and Control, number 1066 in Lecture Notes in
Computer Science, pages 436–448. Springer-Verlag, 1996.

243. J. Spjotvold, E.C. Kerrigan, C.N. Jones, P. Tondel, and T.A Johansen. On the
facet-to-facet property of solutions to convex parametric quadratic programs.
Automatica, 42(12):2209–2214, December 2006.

244. R. Suard, J. Löfberg, P. Grieder, M. Kvasnica, and M. Morari. Efficient compu-
tation of controller partitions in multi-parametric programming. In Proc. 43th
IEEE Conf. on Decision and Control, pages 3643–3648, Bahamas, December
2004.

245. H.J. Sussmann. A maximum principle for hybrid optimal control problems.
In Proc. 38th IEEE Conf. on Decision and Control, Phoenix, Arizona USA,
December 1999.

246. M. Sznaier and M.J. Damborg. Suboptimal control of linear systems with state
and control inequality constraints. In Proc. 26th IEEE Conf. on Decision and
Control, volume 1, pages 761–762, 1987.

http://www.dcsc.tudelft.nl/~cscherer/2416/lmi05.pdf


References 401

247. C.J. Tomlin, J. Lygeros, and S.S. Sastry. A game theoretic approach to controller
design for hybrid systems. Proceeding of IEEE, 88, July 2000.

248. P. Tøndel, T.A. Johansen, and A. Bemporad. An algorithm for multi-parametric
quadratic programming and explicit MPC solutions. In Proc. 40th IEEE Conf.
on Decision and Control, December 2001.

249. P. Tøndel, T.A. Johansen, and A. Bemporad. Evaluation of piecewise affine
control via binary search tree. Automatica, 39(5):945–950, 2003.

250. F. Torrisi, A. Bemporad, G. Bertini, P. Hertach, D. Jost, and Mignone D. Hysdel
2.0.5 - user manual. Technical Report AUT02-28, Automatic Control Laboratory,
ETH Zurich, 2002.

251. F.D. Torrisi and A. Bemporad. HYSDEL — A tool for generating computational
hybrid models. IEEE Trans. Contr. Systems Technology, 12(2):235–249, March
2004.

252. M.L. Tyler and M. Morari. Propositional logic in control and monitoring prob-
lems. Automatica, 35(4):565–582, 1999.

253. V.I. Utkin. Variable structure systems with sliding modes. IEEE Trans. Auto-
matic Control, 22(2):212–222, April 1977.

254. A.J. van der Schaft and J.M. Schumacher. Complementarity modelling of hybrid
systems. IEEE Trans. Automatic Control, 43:483–490, 1998.

255. D.H. vanHessem and O.H. Bosgra. A conic reformulation of model predictive
control including bounded and stochastic disturbances under state and input
constraint. In Proc. 41th IEEE Conf. on Decision and Control, pages 4643–
4648, Las Vegas, Nevada, USA, 2002.

256. E.W. Veitch. A chart method for simplifying boolean functions. In Proceedings
of the Association for Computing Machinery, pages 127–133, May 1952.

257. B. Vibhor and F. Borrelli. On a property of a class of offset-free model predictive
controllers. In Proceedings of the American Control Conference, June 2008.

258. R. Vidal, S. Soatto, Y. Ma, and S. Sastry. An algebraic geometric approach to
the identification of a class of linear hybrid systems. In Proc. 42th IEEE Conf.
on Decision and Control, pages 167–172, Maui, Hawaii, 2003.

259. D. W. Walkup and R.J.-B. Wets. A lipschitzian characterizations of convex
polyhedra. Proceeding of the American Mathematical Society, 20:167–173, 1969.

260. Y. Wang and S. Boyd. Fast model predictive control using online optimization.
In Proceedings of the 2008 IFAC World Congress, pages 6974–6997, July 2008.

261. H.P. Williams. Logical problems and integer programming. Bulletin of the
Institute of Mathematics and Its Applications, 13:18–20, 1977.

262. H.P. Williams. Model Building in Mathematical Programming. John Wiley &
Sons, Third Edition, 1993.

263. H. Witsenhausen. A class of hybrid-state continuous-time dynamic systems.
IEEE Trans. Automatic Control, 11(2):161–167, 1966.

264. H.S. Witsenhausen. A min-max control problem for sampled linear systems.
IEEE Trans. Automatic Control, 13(1):5–21, 1968.

265. X. Xu and P.J. Antsaklis. Results and perspectives on computational methods
for optimal control of switched systems. In O. Maler and A. Pnueli, editors,
Hybrid Systems: Computation and Control, number 2623 in Lecture Notes in
Computer Science, pages 540–555. Springer-Verlag, 2003.

266. X. Xu and P.J. Antsaklis. Optimal control of switched systems based on parame-
terization of the switching instants. IEEE Trans. Automatic Control, 49(1):2–16,
2004.

267. L.A. Zadeh and L.H. Whalen. On optimal control and linear programming. IRE
Trans. Automatic Control, 7:45–46, 1962.

268. E. Zafiriou and M. Morari. A general controller synthesis methodology based on
the IMC structure and the H2-, H∞- and µ-optimal control theories. Computers
& Chemical Engineering, 12(7):757–765, 1988.



402 B Merging of P-collections

269. M. Zefran, F. Bullo, and M. Stein. A notion of passivity for hybrid systems. In
Proc. 40th IEEE Conf. on Decision and Control, pages 768–773, Orlando, FL,
2001.

270. G. M. Ziegler. Lectures on Polytopes. Springer, 1994.


	Part I Basics on Optimization
	Main Concepts
	Optimization Problems
	Continuous Problems
	Integer and Mixed-Integer Problems

	Convexity

	Optimality Conditions
	Introduction
	Lagrange Duality Theory
	Strong Duality and Constraint Qualifications
	Certificate of Optimality

	Complementary Slackness
	Karush-Kuhn-Tucker Conditions
	KKT geometric interpretation


	Polyhedra, Polytopes and Simplices
	General Set Definitions and Operations
	Polyhedra Definitions and Representations
	Polytopal Complexes
	Functions on Polytopal Complexes

	Basic Operations on Polytopes
	Convex Hull
	Envelope
	Vertex Enumeration
	Minimal Representation
	Chebychev Ball
	Projection
	Set-Difference
	Pontryagin Difference
	Minkowski Sum
	Polytope Union
	Affine Mappings and Polyhedra 

	Operations on P-collections
	Set-Difference
	Polytope Covering
	Union of P-collections 


	Linear and Quadratic Optimization
	Linear Programming
	Graphical Interpretation and Solutions Properties
	Dual of LP
	KKT condition for LP
	Active Constraints and Degeneracies
	Convex Piecewise Linear Optimization

	Quadratic Programming
	Graphical Interpretation and Solutions Properties
	Dual of QP
	KKT condition for QP
	Active Constraints and Degeneracies
	Constrained Least-Squares Problems

	Mixed-Integer Optimization
	Mixed Integer Linear Programming
	Mixed Integer Quadratic Programming



	Part II Multiparametric Programming
	General Results for Multiparametric Nonlinear Programs.
	General Results for Multiparametric Nonlinear Programs

	Multiparametric Programming: a Geometric Approach
	Multiparametric Programs with Linear Constraints
	Formulation
	Definition of Critical Region
	Reducing the Dimension of the Parameter Space

	Multiparametric Linear Programming
	Formulation
	Critical Regions, Value Function and Optimizer: Local Properties
	Nonunique Optimizer*
	Propagation of the Set of Active Constraints
	Value Function and Optimizer: Global Properties
	mp-LP Algorithm

	Multiparametric Quadratic Programming
	Formulation
	Critical Regions, Value Function and Optimizer: Local Properties
	Propagation of the Set of Active Constraints
	Value Function and Optimizer: Global Properties
	mp-QP Algorithm

	Multiparametric Mixed-Integer Linear Programming
	Formulation and Properties
	Geometric Algorithm for mp-MILP
	Theoretical Results

	Multiparametric Mixed-Integer Quadratic Programming
	Formulation and Properties

	Literature Review


	Part III Optimal Control
	General Formulation and Discussion
	Problem Formulation
	Solution via Batch Approach
	Solution via Recursive Approach
	Optimal Control Problem with Infinite Horizon
	Value Function Iteration
	Receding Horizon Control

	Lyapunov Stability
	General Stability Conditions
	Quadratic Lyapunov Functions for Linear Systems
	1/ Norm Lyapunov Functions for Linear Systems


	Linear Quadratic Optimal Control 
	Solution via Batch Approach
	Solution via Recursive Approach
	Comparison Of The Two Approaches
	Infinite Horizon Problem
	Stability of the Infinite Horizon LQR

	1/ Norm Optimal Control 
	Solution via Batch Approach
	Solution via Recursive Approach
	Comparison Of The Two Approaches
	Infinite Horizon Problem


	Part IV Constrained Optimal Control of Linear Systems
	Constrained Optimal Control
	Invariant Sets
	Constrained Optimal Control Problem Formulation
	Feasible Solutions
	State Feedback Solution, 2-Norm Case
	Solution via Batch Approach
	Solution via Recursive Approach
	Infinite Horizon Problem
	CLQR Algorithm
	Examples

	State Feedback Solution, 1-Norm and -Norm Case
	Batch Approach
	Recursive Approach
	Example
	Infinite-Time Solution

	State-Feedback Solution, Minimum-Time Control

	Receding Horizon Control
	Introduction
	RHC Implementation
	RHC Main Issues
	Feasibility of RHC
	Stability of RHC

	State Feedback Solution of RHC, 2-Norm Case
	State Feedback Solution of RHC, 1,-Norm Case
	RHC Extensions
	Offset-Free Reference Tracking
	Literature Review

	Constrained Robust Optimal Control
	Introduction
	Robust Invariant Sets
	Problem Formulation
	Feasible Solutions
	State Feedback Solution, 1-Norm and -Norm Case
	Batch Approach: Open-Loop Predictions
	Recursive Approach: Closed-Loop Predictions
	Solution to CROC-CL and CROC-OL via mp-MILP*

	Parametrizations of the Control Policies
	Example
	Robust Receding Horizon Control
	Literature Review

	On-line Control Computation
	Introduction
	Efficient On-Line Algorithms
	Efficient Implementation, 1,-Norm Case
	Efficient Implementation, 2-Norm Case

	Example
	CFTOC based on LP
	CFTOC based on QP

	Literature Review


	Part V Constrained Optimal Control of Hybrid Systems
	Models of Hybrid Systems
	Hybrid models
	Piecewise Affine Systems
	Modeling Discontinuities
	Binary States, Inputs, and Outputs

	Discrete Hybrid Automata
	Switched Affine System (SAS)
	Event Generator (EG)
	Boolean Algebra
	Finite State Machine (FSM)
	Mode Selector
	DHA Trajectories

	Logic and Mixed-Integer Inequalities
	Transformation of Boolean Relations
	Translating DHA Components into Linear Mixed-Integer Relations

	Mixed Logical Dynamical Systems
	Model Equivalence
	The HYSDEL Modeling Language
	Literature Review

	Optimal Control of Hybrid Systems
	Problem Formulation
	Properties of the State Feedback Solution, 2-Norm Case
	Properties of the State Feedback Solution, 1,-Norm Case
	Computation of the Optimal Control Input via Mixed Integer Programming
	State Feedback Solution via Batch Approach
	State Feedback Solution via Recursive Approach
	Preliminaries and Basic Steps
	Multiparametric Programming with Multiple Quadratic Functions
	Algorithmic Solution of the Bellman Equations
	Examples

	Discontinuous PWA systems
	Receding Horizon Control
	Stability and Feasibility Issues
	Examples


	Polycover Algorithms
	Polycover: MILP formulation
	Polycover: Branch & Bound algorithm

	Merging of P-collections
	Preliminaries
	Disjoint Optimal Complexity Reduction
	Algorithm based on Branch and Bound
	Branching Heuristics

	Non-Disjoint Optimal Complexity Reduction
	Boolean Calculus
	Logic Minimization
	Problem Formulation with Boolean Logic
	Algorithm based on Logic Minimization
	Multiple-Valued Logic Minimization

	Local and Global Optimality
	Derivation of Global Hyperplane Arrangement
	Optimality of Algorithms



	Bibliography
	References


